Prof. Dr. Hans-Peter Beise

Konferenzbeiträge

 

  • Da Cruz, S. D., Beise, H. P., Schröder, U., & Karahasanovic, U. (2018, June). Detection of Vital Signs in Presence of Car Vibrations and RADAR-Based Passenger Classification. In 2018 19th International Radar Symposium (IRS) (pp. 1-10). IEEE.
  • Karahasanovic, U., Stifter, T., Beise, H. P., Fox, A., & Tatarinov, D. (2018, June). Mathematical Modelling and Simulations of Complex Breathing Patterns Detected by RADAR Sensors. In 2018 19th International Radar Symposium (IRS) (pp. 1-10). IEEE.
  • Beise, Hans-Peter, Thomas Stifter, and Udo Schröder. Virtual interference study for FMCW and PMCW radar. Microwave Conference (GeMiC), 2018 11th German. IEEE, 2018.

Artikel Journale

  • S. Dias Da Cruz, H. Beise, U. Schröder and U. Karahasanovic, A Theoretical Investigation of the Detection of Vital Signs in Presence of Car Vibrations and RADAR-Based Passenger Classification," in IEEE Transactions on Vehicular Technology (2019).
  • Beise, Hans-Peter, and Jürgen Müller. Generic boundary behaviour of Taylor series in Hardy and Bergman spaces. Mathematische Zeitschrift 284.3-4 (2016): 1185-1197.
  • Beise, Hans-Peter, Thierry Meyrath, and Jürgen Müller. Mixing Taylor shifts and universal Taylor series. Bulletin of the London Mathematical Society 47.1 (2015): 136-142.
  • Beise, Hans-Peter. On the intersection of the spectrum of frequently hypercyclic operators with the unit circle. Journal of Operator Theory 72.2 (2014): 329-342.
  • Beise, Hans-Peter, Thierry Meyrath, and Jürgen Müller. Limit functions of discrete dynamical systems. Conformal Geometry and Dynamics of the American Mathematical Society 18.4 (2014): 56-64.
  • Beise, Hans-Peter. Growth of frequently Birkhoff-universal functions of exponential type on rays. Computational Methods and Function Theory 13.1 (2013),21-35.
  • Beise, Peter, and Jürgen Müller. Limit functions of iterates of entire functions on parts of the Julia set. Proceedings of the American Mathematical Society 141.11 (2013), 3929-3933.
  • Beise, Peter, Jürgen Müller. Growth of (frequently) hypercyclic functions for differential operators, Studia Math., 207 (2011), 97-115.
  • Beise, Peter, Thierry Meyrath, and Jürgen Müller. "Universality properties of Taylor series inside the domain of holomorphy." J. Math. Anal. Appl 383.1 (2011): 234-238.
back-to-top nach oben