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 A B S T R A C T

This study applies a multivariate wavelet framework to examine the time-varying relationship 
between stock market cycles and business cycles in Germany, Japan, the UK, and the USA from 
2000 to 2025. Prior to 2020, stock market cycles generally led business cycles at medium- 
to longterm frequencies. Around 2020, this pattern reversed, indicating a structural shift. 
Controlling for key interest rates reduces regions of significant coherence during the Global 
Financial Crisis, but not around 2020, suggesting a diminished role of interest rates in explaining 
the joint dynamics of stock markets and business cycles in recent years.

. Introduction

Traditionally, the stock market has been regarded as a leading indicator of the business cycle, with stock price changes, under 
ational expectations and market efficiency, often cited among the best single-variable predictors of economic activity (Fischer 
nd Merton, 1984). In this context, wavelet analysis tools, such as wavelet coherence, phase differences, and wavelet gain, have 
roven effective in analyzing co-movement between stock market cycles and business cycles across both time and frequency 
omains. Wavelet analysis decomposes time series into time–frequency components, allowing detection of dynamic patterns, 
ead–lag structures, and structural breaks.
One of the first and most influential applications in this context is Crowley (2007), who used wavelet coherence to analyze 

he evolving relationship between GDP and stock market indices. Subsequent studies, including Aguiar-Conraria and Soares (2011) 
nd Aguiar-Conraria and Soares (2014), extended this to multivariate settings, detecting phase shifts and lead–lag relationships 
cross countries and economic regimes.
Several country-specific applications of wavelet analysis have investigated the relationship between stock markets and business 

ycles. Gallegati (2008), using discrete wavelet transformation, showed that the relationship between US stock returns and US 
ndustrial production is frequency-dependent, with stock returns typically leading industrial production growth, but only at the 
owest frequencies.  Durai and Bhaduri (2009) found a long-term negative relationship for India, with stock prices leading at lower 
requencies, while Tiwari et al. (2018) showed that GDP shocks, especially negative ones, strongly affect US stock prices. Si et al. 
2019) conducted a similar study for China, finding that the stock market cycle tends to lead during economic expansions and lag 
uring recessions, often reacting counter-cyclically. Wang and Li (2020) found a positive correlation between Chinese stock returns 
nd industrial production from 1995 to 2018, with stock returns tending to lead in the medium term and lag in the long term. For 
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Germany, Krüger (2021) applied continuous wavelet transformation and found a positive correlation between industrial production 
and four selected leading indicators, including a stock market index, at lower frequencies.

This study is motivated by the recent, unprecedented shifts in key interest rates. In 2022–2023, the US Federal Reserve raised 
its benchmark rate by 5.25 percentage points, one of the fastest increases on record. Similar hikes occurred in the Eurozone and the 
UK. In March 2024, the Bank of Japan raised interest rates for the first time since 2007. Such changes can affect both real economic 
activity and stock markets, as emphasized in early work by Bernanke and Gertler (1995), Taylor (1995), King and Watson (1996), 
and Mishkin (1996). More recent empirical studies, such as  Alam and Uddin (2009), Bjørnland and Leitemo (2009), or Marfatia 
(2014), confirm that interest rates influence both business cycles and stock markets. Moreover, rate changes may not only affect 
these dynamics individually, but also influence the dynamic interaction between them.

This paper contributes to the literature by being the first to analyze the joint dynamics of industrial production and stock 
markets in a multivariate wavelet setting that incorporates interest rates as a control variable across several major economies. Our 
analysis covers Germany, Japan, the UK, and the USA from 2000 to 2025. We apply wavelet coherence to measure co-movements, 
phase differences to capture lead–lag relationships, and wavelet gain to evaluate the influence of stock markets on business cycles, 
extending the framework with partial wavelet analysis to control for interest rates. Unlike existing country-specific studies (e.g., Si 
et al., 2019), this study provides the first systematic comparison across several major economies during the recent period of drastic 
interest rate changes.

We present three key findings. First, the relationship between economic and stock market cycles varies over time and across 
frequencies, with weak and country-specific correlations at high frequencies and stronger co-movements in the medium- to long-
term frequency ranges. Second, we identify a structural break around 2020: while stock market cycles lead across coherence regions 
before 2020, this pattern reverses thereafter, accompanied by significant increases in the wavelet gain. Third, including interest rates 
has a strong effect on the medium- to long-term coherence structure: coherence regions around 2008 disappear in all countries once 
interest rates are controlled for, while coherence regions around 2020 remain largely unchanged, suggesting a declining explanatory 
role of interest rate policy since 2020.

Section 2 outlines the wavelet analysis methodology. Section 3 presents the empirical analysis and discusses the empirical 
findings. Section 4 concludes.

2. Wavelet analysis

As an extension of Fourier analysis, wavelet analysis, as proposed by Aguiar-Conraria and Soares (2014), allows the estimation of 
time-dependent spectral properties of a time series, enabling a detailed view of both time and frequency components. Although the 
discrete wavelet transform focuses mainly on noise reduction and data compression, the continuous wavelet transform is particularly 
suitable for identifying patterns and hidden information within a time series, as briefly described in the following section.1

A mother wavelet 𝜓(𝑡) that satisfies the admissibility conditions can generate daughter wavelets 𝜓𝜏,𝑠(𝑡) via scaling and translation:

𝜓𝜏,𝑠(𝑡) =
1

√

|𝑠|
𝜓
( 𝑡 − 𝜏

𝑠

)

, 𝑠, 𝜏 ∈ R, 𝑠 ≠ 0. (1)

𝑠 determines the mother wavelet width; 𝜏 shifts it along the time axis.
For a time series 𝑥(𝑡) ∈ 𝐿2(R), the continuous wavelet transform with respect to the wavelet 𝜓(𝑡) is: 

𝑊𝑥;𝜓 (𝜏, 𝑠) = ∫

+∞

−∞
𝑥(𝑡) 1

√

|𝑠|
𝜓∗

( 𝑡 − 𝜏
𝑠

)

d𝑡, (2)

where 𝜓∗ is the complex conjugate of 𝜓 . 𝜏 locates the daughter wavelet in the time domain; 𝑠 determines its position in the frequency 
domain. In the following analysis, we use the Morlet wavelet defined as: 

𝜓𝜔0 (𝑡) = 𝜋
−1
4 exp

(

𝑖𝜔0𝑡
)

exp
(

−𝑡2
2

)

, (3)

with the angular frequency parameter 𝜔0 = 6, a common choice in empirical economics.

2.1. Univariate tools

The wavelet power spectrum is defined as: 

WPS𝑥(𝜏, 𝑠) = |𝑊𝑥(𝜏, 𝑠)|
2. (4)

It measures the localized variance of a time series 𝑥(𝑡) at each time and frequency (or scale).2

1 See Grinsted et al. (2004) for a detailed derivation.
2 See Aguiar-Conraria and Soares (2014) for a detailed explanation of the scale/frequency relation.
2 
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Table 1
Interpretation of the phase difference 𝜙𝑦𝑥.
 Phase range 𝜙𝑦𝑥 Direction Interpretation  
 𝜙𝑦𝑥 = 0 In phase Time series are exactly in phase  
 0 < 𝜙𝑦𝑥 < 𝜋

2
In phase 𝑦(𝑡) leads 𝑥(𝑡)  

 − 𝜋
2
< 𝜙𝑦𝑥 < 0 In phase 𝑥(𝑡) leads 𝑦(𝑡)  

 𝜋
2
< 𝜙𝑦𝑥 < 𝜋 Out of phase 𝑥(𝑡) leads 𝑦(𝑡) (inverse relationship) 

 −𝜋 < 𝜙𝑦𝑥 < − 𝜋
2

Out of phase 𝑦(𝑡) leads 𝑥(𝑡) (inverse relationship) 
The phase difference 𝜙𝑦𝑥 describes the lead–lag relationship between two time series across frequencies. A value near 0 indicates 
synchronous movement; positive (negative) values indicate that 𝑦(𝑡) (𝑥(𝑡)) leads. Phase differences beyond ± 𝜋

2
 suggest inverse 

(out-of-phase) relationships.

2.2. Bivariate tools

Note that all the quantities introduced in this subsection are functions of time and frequency. In order to simplify the notation, 
we follow Aguiar-Conraria and Soares (2014) and describe these quantities for a specific value of the argument (𝜏, 𝑠) and this value 
of the argument will be omitted in the formulas.

To analyze the relationship between two time series 𝑦(𝑡) and 𝑥(𝑡), the cross-wavelet transform is: 
𝑊𝑦𝑥 = 𝑊𝑦𝑊

∗
𝑥 , (5)

where, 𝑊𝑦 denotes the wavelet transform of 𝑦(𝑡), and 𝑊 ∗
𝑥  is the complex conjugate of the wavelet transform of 𝑥(𝑡). The cross-wavelet 

power spectrum |𝑊𝑦𝑥| measures the local covariance between the two time series at each point in time and frequency.
Given our interest in the co-movement between business cycles and stock market cycles, wavelet coherence is particularly 

relevant, as it provides insight into the strength of the co-movement of the two time series at any given time and frequency. The
complex wavelet coherence is given by: 

𝜌𝑦𝑥 =
𝑆(𝑊𝑦𝑥)

√

𝑆(|𝑊𝑦|
2)𝑆(|𝑊𝑥|

2)
, (6)

where 𝑆(⋅) is a smoothing operator in time and frequency.3 The wavelet coherence R𝑦𝑥 = |𝜌𝑦𝑥| takes values in [0, 1].
To investigate the temporal lag between business and stock market cycles, the phase relationship of the two time series can be 

determined by calculating the phase difference. This indicates delays in oscillations between the two time series as a function of 
time and frequency.

The phase difference quantifies the lead–lag relationship between 𝑦(𝑡) and 𝑥(𝑡) at each time and frequency: 

𝜙𝑦𝑥 = arctan
(ℑ(𝑆(𝑊𝑦𝑥))
ℜ(𝑆(𝑊𝑦𝑥))

)

, (7)

where ℑ and ℜ denote imaginary and real parts. We employ phase differences because they not only capture the lead–lag structure 
between two series, but also convey whether their co-movement is positive (in phase) or negative (out of phase). Table  1 summarizes 
how to interpret different phase ranges.

For economic interpretation, selected phase differences are converted into implied lead–lag lengths (in months) following Aguiar-
Conraria and Soares (2011, 2014), using 

𝛥𝑇𝑦𝑥 =
𝜙𝑦𝑥
2𝜋𝑓

. (8)

Note that this yields frequency-specific ranges rather than point estimates, which are interpreted as approximate lead–lag magni-
tudes.

2.3. Multivariate tools

To account for the effect of interest rates on the relationship between the business cycle and the stock market cycle, we employ 
multivariate wavelet tools.

The complex partial wavelet coherence, controlling for a third time series 𝑧(𝑡), is defined as: 

𝜌𝑦𝑥|𝑧 =
𝜌𝑦𝑥 − 𝜌𝑦𝑧𝜌∗𝑥𝑧

√

(1 − 𝑅2
𝑦𝑧)(1 − 𝑅2

𝑥𝑧)
, (9)

where 𝜌∗𝑥𝑧 denotes the complex conjugate of 𝜌𝑥𝑧. The partial wavelet coherence 𝑅𝑦𝑥|𝑧 = |𝜌𝑦𝑥|𝑧| takes values in [0, 1].

3 Smoothing is necessary to avoid coherency being identically one; see Aguiar-Conraria and Soares (2014) for details.
3 
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Table 2
Descriptive statistics.
 (a) Germany
 Statistic IP index Stock index Interest rate  
 Series used Index for Germany DAX ECB: Main Refinancing Operations Rate 
 No. of observations 307 307 307  
 Minimum value 73.30 2423.87 0.00  
 Maximum value 110.80 23,997.48 4.75  
 Mean value 95.47 9,251.90 1.70  
 Standard deviation 8.64 4,512.28 1.60  
 (b) Japan
 Statistic IP index Stock index Interest rate  
 Series used Index for Japan Nikkei 225 BoJ: Target Rate  
 No. of observations 307 307 307  
 Minimum value 78.31 7568.42 −0.10  
 Maximum value 119.91 40,487.39 0.50  
 Mean value 101.22 17,741.63 0.06  
 Standard deviation 7.56 8,139.64 0.17  
 (c) United Kingdom
 Statistic IP index Stock index Interest rate  
 Series used Index for the UK FTSE 100 BoE: Bank Rate  
 No. of observations 307 307 307  
 Minimum value 77.57 3567.40 0.10  
 Maximum value 118.21 8,809.74 6.00  
 Mean value 96.76 6,207.39 2.45  
 Standard deviation 8.23 1,149.34 2.18  
 (d) United States
 Statistic IP index Stock index Interest rate  
 Series used Index for the USA S&P 500 FED: Federal Funds Effective Rate  
 No. of observations 307 307 307  
 Minimum value 79.61 735.09 0.04  
 Maximum value 108.20 6,204.95 6.86  
 Mean value 98.17 2,188.05 1.98  
 Standard deviation 4.31 1,341.02 2.05  
The table presents raw data and series names for industrial production indices, stock indices, and interest rates.

Accordingly, partial phase difference is defined as: 

𝜙𝑦𝑥|𝑧 = arctan
(ℑ(𝜌𝑦𝑥|𝑧)
ℜ(𝜌𝑦𝑥|𝑧)

)

. (10)

The partial wavelet gain, after controlling for 𝑧(𝑡), is: 

𝐺𝑦𝑥|𝑧 =
|𝜌𝑦𝑥 − 𝜌𝑦𝑧𝜌∗𝑥𝑧|

(1 − 𝑅2
𝑥𝑧)

√

𝑆(|𝑊𝑦|
2)

√

𝑆(|𝑊𝑥|
2)
. (11)

The interpretation of the partial wavelet gain is analogous to the bivariate case, with the difference that the effect of 𝑧(𝑡) is held 
constant.

3. Empirical analysis

3.1. Data

Our dataset comprises seasonally and calendar adjusted industrial production (IP) indices for the manufacturing sector and stock 
index data for Germany, Japan, the UK and the USA from January 2000 to July 2025. Production index data are sourced from the 
OECD and stock prices from Bloomberg. Both series are log-transformed to mitigate heteroskedasticity and scale effects, and their 
monthly growth rates (log differences) are used for analysis. Key interest rates (European Central Bank Main Refinancing Rate; Bank 
of Japan Target Rate; Bank of England Bank Rate; and the Federal Funds Effective Rate) are included as control variables in the 
partial wavelet analysis. Table  2 presents descriptive statistics for all variables used.

3.2. Bivariate analysis

Fig.  1 presents the results of the bivariate analysis for Germany, Japan, the UK, and the USA. For each country, the left panel 
displays the wavelet coherence between the business cycle and the stock market cycles. The black contour marks the 10% significance 
4 
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Fig. 1. Bivariate wavelet analysis of Germany, Japan, the UK, and the USA.
5 
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level, and the cone of influence is indicated by the black parabola.4 Coherence ranges from dark blue (low) to dark red (high). In 
the center panel, the phase differences are shown; the right panel illustrates the wavelet gains. Frequency bands of 1–2 and 2–5 
years reflect medium- and long-term dynamics, respectively.

A first major finding from Fig.  1 is that the previously strong pattern, where the stock market cycle led the business cycle, has 
weakened notably around 2020. Significant wavelet coherence regions appear in all countries during the Global Financial Crisis 
(GFC) around 2008 in both the 1–2 and 2–5 year periods. During this period, phase differences for all countries lie almost entirely 
in the interval (− 𝜋

2 , 0), indicating that the stock market cycle leads the business cycle. Quantitatively, the implied stock market lead 
averages about 2.2 months in Germany, compared with roughly 0.2 months in Japan and 0.5 months in the USA. Around 2020, 
however, phase differences in the 1–2 frequency band shift to 0 (Japan, USA) or into the interval (0, 𝜋2 ) (Germany, UK) during times 
of significant wavelet coherence, indicating that the business cycle began to lead. In the 2–5 frequency band, results for the UK and 
the USA slightly contrast with this finding. A second key finding is the appearance of pronounced spikes in wavelet gain during 
periods of significant coherence since 2020. This implies a larger local regression coefficient 𝛽, reflecting a stronger stock market 
influence on industrial production. Together with the lead–lag reversal, this suggests that the relationship between stock market 
cycles and business cycles remains strong but has structurally changed. Notably, this finding holds for all countries in the 1–2 year 
periods.

Overall, our results from the bivariate analysis are consistent with prior studies on co-movement and lead–lag relationships, 
including those by Tiwari et al. (2018), Si et al. (2019), Wang and Li (2020) and Krüger (2021). The following section extends the 
analysis by incorporating interest rates using partial wavelet analysis.

3.3. Partial analysis

Fig.  2 presents the results of the multivariate analysis for Germany, Japan, the UK, and the USA.
A key finding of our analysis emerges when comparing Fig.  2 to Fig.  1. The significant coherence regions observed during the 

GFC around 2008 largely vanish after including interest rates. In contrast, the coherence regions around 2020 remain largely intact 
across all countries, even when controlling for interest rates. The patterns in phase differences and wavelet gains during this period, 
especially in the 1–2 year band, are broadly consistent with those in Section 3.2.

More specifically, after controlling for interest rates, the only consistently significant coherence regions appear in the 1–2 year 
band around 2020. Phase differences indicate that business cycles lead stock market cycles in Germany and Japan, but that stock 
markets lead business cycles in the USA. Quantitatively, the implied lead amounts to about 0.5 months in Germany and 0.3 months 
in Japan, while the stock market leads by roughly 1.9 months in the USA. In the 2–5 year frequency band, the previously significant 
coherence regions around 2008 largely disappear. In Germany and the USA, distinct 4-year coherence regions persist from 2010 to 
2025, separate from both the GFC and 2020 patterns. These results suggest that interest rates largely account for joint movements 
at lower frequencies, consistent with Si et al. (2019). Consequently, interest rates should be explicitly considered when analyzing 
the evolving relationship between stock markets and business cycles.

3.4. Robustness checks

To verify the robustness of our findings, we employ two standard methods. First, we estimate bivariate VAR models of monthly 
industrial production growth and stock returns, including key interest rates as exogenous controls. Each model uses six monthly 
lags and Monte Carlo impulse responses (1000 replications) up to a 24-month horizon. Granger causality tests assess whether past 
stock market movements help predict industrial production and vice versa. Second, we estimate GARCH(1,1) models for monthly 
stock returns to measure average and peak conditional volatility.

The results in Table  3 show that stock markets significantly led industrial production before 2020 in all countries, with 
bidirectional causality in the USA. After 2020, this relationship weakened or even reversed in several economies. These findings 
are consistent with the wavelet-based evidence of a structural break in the lead–lag relationship between stock market and business 
cycle dynamics. GARCH results further show that conditional volatilities were higher before 2020.

4. Conclusion

This paper examines the dynamic relationship between stock market cycles and business cycles in Germany, Japan, the UK, 
and the USA from 2000 to 2025 using multivariate wavelet methods. A key contribution is the inclusion of interest rates via partial 
wavelet analysis. The findings show that, prior to 2020, stock market cycles typically led business cycles in the medium- to long-term 
frequency bands, but this pattern reversed around 2020, indicating a structural shift. Controlling for interest rates reduces coherence 
regions during the GFC but leaves coherence regions around 2020 largely unchanged, suggesting that interest rate policy has lost 
explanatory power for recent business and stock market dynamics.

4 To calculate significance, we generate surrogates by fitting an ARMA(1,1) model with a moving average to each time series. Residuals are drawn from a 
Gaussian distribution using the estimated variance, and this process is repeated 5000 times. The critical values for the 10% significance level are then extracted. 
Phase differences and wavelet gains should only be interpreted when wavelet coherence is statistically significant.
6 
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Fig. 2. Partial wavelet analysis of Germany, Japan, the UK, and the USA.
7 
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Table 3
VAR and GARCH robustness analysis.
 (a) Germany
 Period Stock→IP IP→Stock Max. IRF (Stock→IP) Mean Volatility Max. Volatility (Date) 
 2000–2019 0.0005*** 0.8822 0.0037 22% 70% (2002–11)  
 2020–2025 0.2062 0.0043*** 0.0025 17% 21% (2020–05)  
 (b) Japan
 Period Stock→IP IP→Stock Max. IRF (Stock→IP) Mean Volatility Max. Volatility (Date) 
 2000–2019 0.0162** 0.3186 0.0039 21% 52% (2008–12)  
 2020–2025 0.1571 0.3386 0.0061 16% 18% (2020–01)  
 (c) United Kingdom
 Period Stock→IP IP→Stock Max. IRF (Stock→IP) Mean Volatility Max. Volatility (Date) 
 2000–2019 0.0447** 0.1142 0.0021 14% 30% (2008–12)  
 2020–2025 0.0170** 0.0009*** 0.0022 12% 15% (2020–05)  
 (d) United States
 Period Stock→IP IP→Stock Max. IRF (Stock→IP) Mean Volatility Max. Volatility (Date) 
 2000–2019 0.0000*** 0.0013*** 0.0018 15% 45% (2008–12)  
 2020–2025 0.8480 0.4005 0.0015 17% 19% (2020–01)  
This table reports Granger causality 𝑝-values and impulse response function (IRF) maxima from VAR models together with annualized mean and maximum 
GARCH(1,1)-based volatility estimates. Significance levels: * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
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