
Dynamic Segmentation for Efficient Retrieval of Podcasts
The Repping Algorithm

Stephan Repp
Independent

Trier, RLP, Germany
repping@repp.app

Ernst Georg Haffner
Hochschule Trier

Trier, RLP, Germany
e.haffner@hochschule-trier.de

Abstract
In the following article, we present a method that makes it possible
to find specific segments in a podcast from a large collection using
a query (keywords or question). What differentiates our method is
that there is no segmentation process at the beginning, but rather
the segmentation is done dynamically according to the query en-
tered. The core of our method is that for each term a position-based
index is spanned over each individual document. These indices are
laid over the individual documents like small threads of informa-
tion. This multitude of threads maps the inner semantic structure of
each individual document in the collection. The corresponding re-
sponse segments are then individually determined according to the
query at runtime using this index. Our initial tests have shown that
this method significantly outperforms all current podcast-retrieval
methods.

Keywords
Podcast Retrieval, Segment Retrieval, Dynamic Segmentation, Speech
Browsing, Video Browsing, Query-based Search, Semantic Indexing,
Multimedia Information Retrieval, Question Answering, Transcript
Search, Fine-grained Content Access, Floating Index

Copyright © 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use.
The definitive Version of Record was published in Proceedings of the 2024
International Conference on Multimedia Retrieval (ICMR ’24),
DOI: 10.1145/3652583.3658047

1 Introduction
Standard search engines deliver several results for one search: Generally
they provide complete pages or entire documents, highlighting relevant
passages of text. However, if only specific passages within the selected
document are of interest, the only option is often the old- fashioned, classic
keyword search via a browser. Thus, although traditional search engines
offer a convenient way to search for documents, they do not allow one to
easily search or browse specific areas within the documents. In the case of
multimedia files (podcasts, videos), the situation is compounded by the fact
that this content is often not yet indexed by search engines. Here, the search
engine will not find any results unless there is meta information about the
media files entered by hand. If a video or podcast is to be indexed by the
searcher, then he or she must work through the entirety of the content to
find the relevant segment if no metadata is available. This takes quite a long
time for feature films or extensive podcasts.
In addition, it still does not provide a comparison of this segment found with
another segment from another multimedia document. The crucial problem
of which passage in the whole corpus is the most relevant segment for
the corresponding query has not been solved. Our approach provides an

individual list of exact locations from a document collection for a query.
These locations are ranked by relevance and the user receives a list of
possible answers to his or her query. A document can also contain several
reference locations for one search.
Classical approaches first run through a text segmentation and then rank
or index the resulting segments accordingly. Errors can occur during the
segmentation process, which are amplified as the process continues or make
the result unusable.
Our method is different in that no segmentation process takes place in
advance, but rather the segmentation is carried out dynamically with the
search query. It is a massive process that does not consist of two separate
processes. The basis for this is that an index is created for each term via the
documents. For each term, this index contains a time (for podcast/videos)
or a character position (for texts), when this term occurs frequently. When
searching for word combinations, the temporal intersection of the ranges is
used. This results in a large number of possible combinations for a search
query. We have succeeded in optimizing the method, so that it calculates
both the ranking and the intersection very quickly. It is also possible to add
new documents to the index without completely recalculating the entire
index.
We call the method “repping.” The term “repping” is, on the one hand, based
on the word “repp.” Repp – also known as rep, rip, or reps – is a fabric
woven in fine cords or ribs across the width of a piece. These fine cords hold
the fabric together and the fabric appears whole. Our method is also based
on many fine strips that together form a whole: the contents of a document.
The second meaning for the term “repping” is based on the word “reppin,”
which means to represent something. The index generated represents the
whole dimension of a document.

2 Related Work
The research status of our field is well described in the two summaries of the
TREC Podcasts Track [11, 38]. For these conferences, relevant podcasts and
the corresponding transcripts with the time stamps were provided. These
could then be used to compare the different methods. Unfortunately, the
podcast track no longer takes place, but the data provided by the conference
is used in our experiments. These conferences showed that methods with
pretrained transformers such as BERT performed best [2, 3]. In these meth-
ods, segments of the podcast transcripts are first created. The resulting text
segments are then used as input for the transformer [5, 16]. This approach
shows surprisingly good results. A disadvantage of this, however, is the
large amount of computing power required [36].
Information retrieval is a rather old science that is constantly evolving. A
very big milestone was what is known as the exact term matching method.
The Okapi BM25 method thus represents a breakthrough in information
retrieval. As a baseline, 120 second-long text segments are retrieved with
the Okapi BM25 method. This procedure represents the baseline, which
we aim to exceed [9, 38]. However, there are some disadvantages of the
exact term matching method. As the term implies, only terms that exactly
match the query can be found in the corpus. A solution involves extending
either the search space or the search query with different methods avail-
able. Another improvement is to include the information from the provided
meta information (headings in texts, summary, etc.) in the weighting of the

https://orcid.org/0009-0007-2188-9012
https://orcid.org/0000-0003-3689-7932
https://doi.org/10.1145/3652583.3658047

Stephan Repp & Ernst Georg Haffner

retrieved terms [40].
In these procedures of podcast tracks from the TREC conference, the doc-
uments are first divided into individual segments and then indexed using
various indexing methods. This first step of dividing the documents into
meaningful segments is a big challenge. [19] present an overview of the cur-
rent segmentation methods of texts. Segmentation of text is about extracting
coherent blocks of text [18]. The segment is called a “segment boundary”
[35] or “passage” [15]. Two other studies refer to a segment as a “subtopic”
[37] and “region of interest” [17].
There are many reasons why splitting up a document can be useful for text
analysis. One of the main reasons is because it makes them smaller and
more coherent than whole documents [15]. Another reason is that each
segment is used as a unit of analysis and access [15]. Text segmentation
has been used for processing text in topic identification [1, 4], language
detection [20], and information retrieval [8], among other things.
What all methods have in common is that the boundaries are set statically in
the document. Only then does the actual indexing process of these segments
usually take place. The process segmentation is very error-prone. What ex-
actly a segment is, is often not clearly defined and is also task dependent. It
is desirable to have a process that can create the segments very dynamically
depending on the query.
Linguistic research has shown that word repetition in a text is an indication
of thematic context. A change in vocabulary and its specific distribution
within a document usually indicates a topic change [6, 7, 13, 14, 31, 39].
In our opinion, current approaches do not take these features into account
to a sufficient degree. Therefore, we assume that certain areas have similar
vocabularies and the size of the segments found can vary depending on the
query. The goal of indexing is to capture the semantic structure of docu-
ments in depth in a structured manner. These points are the starting points
of our method, which will be described in the following:

3 Algorithm
In order for podcasts to be indexed, a transcript is generated at the beginning
with the help of a speech recognizer. This transcript with the corresponding
time stamps of the individual words represents the basis for the indexing.
Texts can be indexed in the same manner and the position of the words
represents the correspondence of the time marks. First, a type of clustering
is carried out, which captures cohesive and similar areas of a transcript/texts
(called ”text” in the following) and stores them as an index. The clustering
of the same words at certain intervals are taken into account. Each entry in
the index provides information about certain locations in the text. An index
entry is a range from the first occurrence to the last occurrence of a word
within a certain text range. The spacing of the words must not exceed a
certain interval. The procedure consists of the following steps: Preprocess-
ing, Clustering, Calculation of the index and Searching the corresponding
segments for a query. Both Preprocessing and Clustering are described in
detail in the following publications [21, 22, 27–29].

3.1 Preprocessing
After standard preprocessing – reduction of the words to their basic form
and filtering of the stopwords – these terms are stored in a list 𝐿. The
list 𝐿 contains all terms that occur in the texts without the stopwords 𝑆 .
Stopwords could also be taken into account. Since they occur quite often,
they are not marked later in the index as highly relevant. Consequently,
they then have little effect on the result and we have filtered them out.
There are 𝑛 different terms. 𝑡𝑖 is a selected term and𝑉 is the vocabulary of
the texts.

𝐿 = {𝑡𝑖 ∈ 𝑉 |1 ≤ 𝑖 ≤ 𝑛} \ 𝑆 (1)

𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 ...

start end

𝑖𝑛𝑑𝑒𝑥-𝑒𝑛𝑡𝑟𝑦

𝑡𝑖𝑚𝑒 > 𝜖 time

Figure 1: Example of Index-Entries

3.2 Clustering of the thematically similar areas
In this step, for each term 𝑡𝑖 , the ranges are generated in which the term
occurs in clusters, see figure 1. To do this, a threshold 𝜖 is set that defines
the distance between the terms. If the distance between the occurrence
of adjacent terms 𝑡𝑖 is greater than 𝜖 , a new index entry is created. The
distance 𝜖 refers only to equal terms 𝑡𝑖 that are close to each other. This
clustering is used to locate the areas where the speaker talks about a term.
For each index entry 𝑟𝑘 , the term number 𝑓 (𝑡𝑖 , 𝑘) of a term 𝑡𝑖 , the start
time and the end time are recorded, see figure 2. Here 𝑘 denotes one index
entry uniquely,𝑚 is the number of all index entries.

1 ≤ 𝑘 ≤ 𝑚 (2)

The table 1 and the figure 2 show an example of an index for a podcast. The
first index “topology” contains the term “topology” in a podcast 12 times;
the index entry starts at the start time 100s and ends at the end time 3000s.
In addition to this index entry, the same text contains another “topology”
index entry with a start time of 3200s and an end time of 5000s. In this index
entry, the term “topology” is mentioned 7 times. This example also shows
that there is an overlap between the individual index entries of different
terms. Thus, the figure 2 shows for example that the term “topology” and
the term “star” overlap.

3.3 Calculation of the relevance of an index
entry

In our first publications, we used the index entries created in this way for
the automatic generation of learning objects. A semantic search engine
was built on these learning objects. This provided the time position in the
lecture video in response to a question [23, 24, 24, 29].
In our research [22] only the simple number of occurring terms (term num-
ber) was used for the weighting. For an given archive of 24 lecture videos
in German language and 1860 minutes total duration, it could be shown on
a lecture browser that this is sufficient for browsing the lecture videos.
We have developed this approach further and use a modified formula of
the Okapi BM25 method. Each index entry is assigned a specific relevance,
i.e. each entry has its individual 𝑠𝑐𝑜𝑟𝑒 . Our formula is based on the Okapi
BM25 function [10, 38].
The Okapi BM25 function computes the relevance of documents with re-
spect to a query. Since our problem involves segments within documents,
we first compute only the relevance of the segments. The subsequent query
is then determined using this index. We have adapted the Okapi BM25
function for the relevance calculation of the individual segments as follows:
The score for an index entry 𝑟𝑘 of the term 𝑡𝑖 is calculated with:

score(𝑟𝑘 , 𝑡𝑖) = IDF(𝑡𝑖) ·©­­«1 + 𝑘3 ·
𝑓 (𝑡𝑖 , 𝑘) · (𝑘1 + 1)

𝑓 (𝑡𝑖 , 𝑘) + 𝑘1 ·
(
1 − 𝑏 + 𝑏 · 𝑎𝑣𝑔𝑑𝑙|𝑟𝑘 |

) ª®®¬ (3)

IDF(𝑡𝑖) = ln
(
𝑘2 +

𝑁

𝑛 (𝑡𝑖)

)
(4)

Dynamic Segmentation for Efficient Retrieval of Podcasts

𝑡𝑖

𝑡𝑖𝑚𝑒

𝑟1,𝑡1 = 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦, 𝑓 (𝑡1, 1) = 12 𝑟2,𝑡1 = 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦, 𝑓 (𝑡1, 2) = 7

𝑟3, 𝑡2 = 𝑠𝑡𝑎𝑟 , 𝑓 (𝑡2, 3) = 3

𝑟4, 𝑡3 = 𝑏𝑢𝑠 , 𝑓 (𝑡3, 4) = 5

𝑟5, 𝑡4 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , 𝑓 (𝑡4, 5) = 14

start end

Figure 2: Example of the Index

IDF(𝑡𝑖) is the inverse document frequency. Here, 𝑁 corresponds to the
number of documents in the corpus, 𝑛 (𝑡𝑖) is the number of documents
in which the term 𝑡𝑖 occurs. This first part of the formula reflects the fre-
quency of occurrence of the term 𝑡𝑖 in the documents 𝑁 . The other part of
the formula reflects the relevance of the individual index entries. It captures
to what extent the index entries and their parameters contribute to the
relevance (𝑠𝑐𝑜𝑟𝑒 value).
Where 𝑓 (𝑡𝑖 , 𝑘) is the number of occurrences of the term 𝑡𝑖 between 𝑠𝑡𝑎𝑟𝑡

and 𝑒𝑛𝑑 of an index entry 𝑟𝑘 , |𝑟𝑘 | is the number of all terms in the cor-
responding range. This means all terms (not just 𝑡𝑖 terms) occurring in
the corresponding time interval from 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 ; 𝑎𝑣𝑔𝑑𝑙 is the average
number of all occurring terms in the corresponding range.
For the determination of the parameters 𝑎𝑣𝑔𝑑𝑙 , 𝑘1, 𝑘2, 𝑘3, 𝑏 and 𝜖 we have
performed initial tests and estimated the values. The question of the optimal
parameters has not been explored conclusively yet. In particular, balancing
the relevance of the document (first part of the formula IDF(𝑡𝑖)) and the
relevance of the individual areas (second part of the formula) has not yet
been clarified in detail. Since the precise determination of these parameters
is very complex and time-consuming, we have not yet been able to do this
with our resources. It took several years of extensive research to obtain
general parameter values for the the Okapi BM25 formula.[10, 32–34, 38]
and many more publications. This lengthy and laborious process can only
be worked out collaboratively in the research community.
In contrast to the original Okapi BM25 formula, we have exchanged |𝑟𝑘 |
in the fraction with 𝑎𝑣𝑔𝑑𝑙 . This means that a range with a higher number
of terms is weighted higher. When the speaker talks about the topic for a
longer time, this signals a higher relevance. The swap has a positive effect
on the search result. Investigating this in more detail is also the subject of
future extensive and time-consuming research.
Our research shows that our approach is promising and it would be worth-
while to continue developing this approach. The following values for the
parameters are considered a first attempt to achieve a good result. There
is still considerable potential here for increasing the performance of the
method. We have set the values as follows: 𝑎𝑣𝑔𝑑𝑙 = 10, 𝑘1 = 1, 𝑏 = 0.75. For
the conversion into a performant and executable software we have chosen
𝑘2 = 9. This ensures that IDF(𝑞𝑖) is greater than or equal to 1. Similarly, we
chose the parameter 𝑘3 so that the second part is likewise always greater
than or equal to 1, 𝑘3 = 1000. This ensures that the ranking can be stored
as an integer value. We determined a distance for 𝜖 of about 3 minutes [22].
We have now created an index entry we call 𝑟𝑒𝑝𝑝 for repetition. We call
the resulting relation 𝑅 (𝑘,𝑑𝑜𝑐𝐼𝐷, 𝑡𝑖 , 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, score) the 𝑟𝑒𝑝𝑝-𝑖𝑛𝑑𝑒𝑥 ,
one element is one 𝑟𝑒𝑝𝑝 . This contains all the entries that overlay each

Table 1: 𝑅𝑒𝑝𝑝-𝑖𝑛𝑑𝑒𝑥 : 𝑅(𝑘, docID, 𝑡𝑖 , 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, score), 𝑓 (𝑡𝑖 , 𝑘)

𝑘 𝑑𝑜𝑐𝐼𝐷 𝑡𝑖 𝑠𝑡𝑎𝑟𝑡 𝑒𝑛𝑑 𝑓 (𝑡𝑖 , 𝑘) score(𝑟𝑘 , 𝑡𝑖)
1 3 topology 100 3000 12 64
2 3 topology 3200 5000 7 12
3 3 star 400 2000 3 50
4 3 bus 4000 5500 8 10
5 3 network 10 5600 3 7
...

𝑡𝑖

𝑏𝑢𝑠/𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , score = 70

𝑡3, 𝑏𝑢𝑠 , score = 10

𝑡4, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , score = 7

𝑡𝑖𝑚𝑒

Figure 3: Example of a Search

document like little semantic threads, capturing semantic structure. The
table 1 contains an example of this relation.

3.4 Searching the corresponding segments
The next step is to search for the segments in the corpus. First, all entries
for the corresponding search query 𝑄 are selected in the 𝑟𝑒𝑝𝑝-𝑖𝑛𝑑𝑒𝑥 𝑅.
Now, only those documents in the 𝑟𝑒𝑝𝑝-𝑖𝑛𝑑𝑒𝑥 which contain the entire
search terms are included. Then the intersection is formed from the two (or
more) 𝑟𝑒𝑝𝑝𝑠 found. That is, the intersection of the temporal overlap of the
segments is created, see figure 3. This creates new segments. These new
segments are given a new score measure that is calculated by multiplying
the two individual score values. The sorted result, sorted according to the
scoring value, represents the result.
In the following example, the two search terms "network" and "bus" are
searched. The segment found (bus/network) is now the temporal intersec-
tion of the two 𝑟𝑒𝑝𝑝𝑠 found, see figure 3. If the result set has several such

Stephan Repp & Ernst Georg Haffner

segments, they are output sorted by score in descending order. In detail,
the search is done as follows, see also the algorithm 1:
A search query𝑄 contains the terms.

𝑄 =
{
𝑞 𝑗 ∈ 𝐿 |1 ≤ 𝑗 ≤ 𝑜

}
(5)

𝑜 is the maximum allowed number of search terms in a query, 𝑞 𝑗 is a query
term. The first step is to find the documents in which the search terms all
occur. To do this, the documents for a 𝑞 𝑗 are determined.

𝐷 𝑗 = {𝐷 𝑗 ⊆ 𝐷 |𝑞 𝑗 ∈ 𝐷 𝑗 } (6)

𝐷 is the set of all documents, 𝐷 𝑗 is the subset of documents in which the
query term 𝑞 𝑗 occurs. The result of the intersection over all sets of the
documents found are the documents that contain all terms.

𝑀 = 𝐷1 ∩𝐷2 ∩𝐷3 · · · ∩𝐷𝑜 (7)

𝑀 is the intersection of all documents inwhich all search terms𝑞 𝑗 occur. The
algorithm now determines the segments of the search query sorted by the
score. For this purpose, the intersection of the 𝑟𝑒𝑝𝑝𝑠 is determined for each
document (from line 1), i.e. the overlapping areas of temporal occurrence
(lines 8-19). The new 𝑠𝑐𝑜𝑟𝑒 value is determined by multiplication (line 9)
and the new resulting segments are entered into the relation 𝑅𝑆 (RS.add,
line 11, 13, 15, 17), depending on how the areas overlap. The sorted relation
according to the 𝑠𝑐𝑜𝑟𝑒 (line 22) represents the result of the search.
It is also possible to perform the search with synonyms for a term. A term
can be expressed by several other terms that mean the same thing. For this,
the 𝑟𝑒𝑝𝑝𝑠 found of the two synonyms (from the set of documents found,
𝑀) are first united with each other using a union set and then considered a
new segment 𝑟𝑒𝑝𝑝 .
The presented algorithm was first implemented with an ordinary database.
This shows a considerable runtime for the query. In addition, the runtime
increases exponentially with the number of stored index entries.
We therefore developed an efficient data structure that maps the index. In
addition, we created our own key-value database and combined this with a
cache. So a O(𝑛) solution has been found that does not rely on a database.
This enabled us to process the queries in ms. Additionally, it is possible to
add a new document to the index without having to recalculate the index.
Describing the technical realization is beyond the scope of this publication.
Our implementation is done on a 𝐴𝑀𝐷𝑅𝑦𝑧𝑒𝑛𝑇𝑀77700 with 64 GB DDR5.
The 100,000+ podcasts in the following experiments were indexed within 5
hours. Calculating the CO2 emissions for these 5 hours on the corresponding
processor is not exactly easy. The page Machine Learning Impact Calculator
only offers a calculation for much more powerful processors [12].
We therefore assume that the indexing of the following experiments required
less than 0.1 kgCO2eq and that this CO2 consumption is very efficient for
solving the task. The answer to a query is provided in near real time (much
smaller than 100𝑚𝑠).

4 Results
The guiding data for the evaluation are the data from both the 2020 and
2021 TREC Podcasts Tracks, see page https://trecpodcasts.github.io/.
For the evaluation, the two conferences provide over 100,000 podcast episodes
with the appropriate meta (audio, automatic transcripts, etc.). A number
of questions were provided for the evaluation as part of the conference.
The task was to find relevant podcasts from the provided archive and, in
addition, relevant time periods within these podcasts.
Assessments were made on the PEGFB graded scale (Perfect, Excellent,
Good, Fair, Bad) as approximately follows: Excellent (3), Good (2), Fair (1)
and Bad (0).
Generally, topics were formulated in three types: topical, re-finding, and
known-item in the Podcast Task 2020. In the track of 2021, only topical and

known-item are distinguished. Here the question types of re-finding and
known-item were combined into known-item.
For this question type (known-item), there are only the categories Perfect
(4): the segment is the intended item and Bad (0): the segment is not intended
item.
For our evaluation, we only distinguish between topic and known-item (re-
finding and known-item) for the 2020 data. The metrics for evaluation is
𝑛𝐷𝐶𝐺 on the first thirty items found. Normalization is based on the ideal
ranking of all relevant segments. In addition, the precision of the first ten
segments found is calculated.

Table 2: Comparing to TREC 2020

𝐷𝐶𝐺30 𝑃10
repping 0.50 0.73
UMD_IR_run3 0.52 0.60
UMD_IR_run4 0.50 0.58
UMD_IR_run1 0.49 0.56
BERT-DESC-S 0.47 0.57
...
Baseline BM25 0.40 0.49

Table 3: Comparing to TREC 2021

𝐷𝐶𝐺30 𝑃10
repping 0.51 0.65
tp_mt_f1 0.37 0.40
t_mt5_f2 0.37 0.40
osc_tok_vec 0.35 0.41
TUW-hyprid-cat 0.34 0.39
..
Baseline BM25 0.25 0.29

Table 4: Precision at 10

2020 2021
precision at 1 0.76 0.80
precision at 2 0.77 0.77
precision at 3 0.79 0.73
precision at 4 0.80 0.71
precision at 5 0.77 0.69
precision at 10 0.73 0.65
precision at 15 0.72 0.61
precision at 20 0.69 0.59
precision at 30 0.67 0.56

Tables 2 and 3 show our results compared to the results of the two TREC
Podcasts Track from 2020 and 2021. The complete list of precision values
are shown in table 4. This shows that our method’s precision values are
significantly better than those of the other methods. The 𝐷𝐶𝐺30 is signifi-
cantly better for the 2021 TREC Podcasts Track data, and the second best
value for the 2020 TREC Podcasts Track.
Next, we examine the location in the result set that correctly answers the
question. In the following analysis we also include the quality of the answer,
see the table 6. 3/4 of the question is answered with the first hit (quality of
the answer "better than nothing"). Almost 2/3 of the question is answered

https://mlco2.github.io/impact#compute
https://trecpodcasts.github.io/

Dynamic Segmentation for Efficient Retrieval of Podcasts

Algorithm 1 Repping
Require: 𝑀 ≠ ∅, 𝑅 ≠ ∅,𝑄 ≠ ∅
Ensure: Result Set of ranked Segment 𝑅𝑆
1: for each docID in𝑀 do
2: 𝐴← 𝑅 ⊲⊳𝑅.𝑡=𝑄.𝑞∧𝑅.𝑑𝑜𝑐𝐼𝐷=𝑑𝑜𝑐𝐼𝐷 𝑄

3: 𝐵 ← clone of 𝐴

4: for each 𝑎 in 𝐴 do
5: 𝑠𝑡𝑎𝑟𝑡 ← 𝑎.𝑠𝑡𝑎𝑟𝑡

6: 𝑒𝑛𝑑 ← 𝑎.𝑒𝑛𝑑

7: del Element 𝑎 in 𝐵

8: for each b in 𝐵 do
9: score← 𝑏.score · 𝑎.score
10: if 𝑏.𝑠𝑡𝑎𝑟𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡∧ ≤ 𝑒𝑛𝑑 then
11: 𝑅𝑆.𝑎𝑑𝑑 (𝑏.docID, 𝑏.𝑠𝑡𝑎𝑟𝑡,𝑏.𝑒𝑛𝑑, score)
12: else if 𝑠𝑡𝑎𝑟𝑡 ≥ 𝑏.𝑠𝑡𝑎𝑟𝑡 ∧ 𝑒𝑛𝑑 ≤ 𝑏.𝑒𝑛𝑑 then
13: 𝑅𝑆.𝑎𝑑𝑑 (𝑏.docID, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, score)
14: else if 𝑠𝑡𝑎𝑟𝑡 ≥ 𝑏.𝑠𝑡𝑎𝑟𝑡 ∧ 𝑒𝑛𝑑 ≥ 𝑏.𝑒𝑛𝑑 ∧ 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑏.𝑒𝑛𝑑 then
15: 𝑅𝑆.𝑎𝑑𝑑 (𝑏.docID, 𝑠𝑡𝑎𝑟𝑡,𝑏.𝑒𝑛𝑑, score)
16: else if 𝑏.𝑠𝑡𝑎𝑟𝑡 ≥ 𝑠𝑡𝑎𝑟𝑡 ∧ 𝑏.𝑒𝑛𝑑 ≥ 𝑒𝑛𝑑 ∧ 𝑏.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 then
17: 𝑅𝑆.𝑎𝑑𝑑 (𝑏.docID, 𝑏.𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, score)
18: end if
19: end for
20: 𝐵 ← 𝑅𝑆

21: end for
22: end for
23: sort 𝑅𝑆 by score descending

Table 5: Result of known-item Questions

Question answered: within the
first hits correct

2020
15 Questions

1 10 67%
2 11 73%
3 12 80%
10 13 87%

2021
10 Questions

1 3 30%
2 5 50%
3 5 50%
10 6 60%

Summary
25 Questions

1 13 52%
2 16 64%
3 17 68%
10 19 76%

with the first hit if the answer is better than fair. Here, it would still have to
be examined whether there is an answer at all in the entire corpus that is
Excellent (3) or Perfect (4).
Some questions of the data of the TREC Podcasts Track of 2020 and 2021
contain questions to which there should be only "one" correct answer (type
of questions know-item). If we now take a closer look at these questions and
examine at which position in the answer list the questions are answered, we
get the following result which is shown in the table 5. 2/3 of these questions
can be answered correctly within the first 3 hits.
Our results can be checked with the help of the search engine at, Demo
Search. For this, you will need a key which can be requested via rep-
ping@repp.app. The key 𝑎𝑠𝑑 𝑗𝑘 𝑗𝑐𝑖𝑙089𝑧𝑠𝑘𝑐𝑚ℎ1092 can be used for the
duration of the conference. This is necessary because the corresponding
rights to the podcast do not belong to the authors and may only be used for
research purposes.

5 Conclusion
With our experiments we were able to show that our method provides
significantly better results than all current methods, both with the data
from the two TREC podcast tracks from 2020 and from 2021. The evaluation
of the segments has been carried out according to the same PEGFB method
as was used for the two TREC podcast tracks. Since the evaluation of the
hits is also always a subjective decision, our results can be retrieved and
reviewed at xx.xx. The two steps of segmentation and indexing are merged
into one step in our method, or the corresponding segment is computed at
runtime and according to the search query. The costs for the computations
are low.
By using a synonym lexicon, the results were able to be further improved.
The ranges of synonyms can be integrated into the search by a union set.
Similarly, an increase in results could be achieved by including the titles
and descriptors of the corresponding podcasts [40].
The parameters of the ranking formula k1 and b have been derived from
the literature. Research work is still required here to optimally tune these
parameters. Once this has been done, an improvement of the search results
can be expected. This also applies to the parameters k2 and k3, which have
been roughly estimated by initial experiments. Likewise, the 𝑟𝑒𝑝𝑝- 𝑖𝑛𝑑𝑒𝑥
could be an input for a Deep Bidirectional Transformer (for example BERT).
This would make it possible to capture and evaluate the documents in a
much more far-reaching manner.
With our new approach, the dimension of the search can be significantly
expanded, and it is now possible to really browse in a podcast (or in the
documents); the boundaries of the document have been broken down. The
granularity of the search is reduced to the smallest possible level, and the
semantic relationships can now finally be mapped and thus captured. Like-
wise, it is possible to visualize the index and locate areas of high relevance.
The method delivers results in near real time for a combined keyword search
as well as for complex questions. These results fit semantically with the
corresponding question.
Our new method can achieve significant increases in segment retrieval and

https://repp.app/retreat.html
https://repp.app/retreat.html

Stephan Repp & Ernst Georg Haffner

Table 6: Position answered the Question correct.

2020 2021
50 Question / Answer better than Bad (1,2,3,4)
Question answered with the 1 hit 76% 80%
Question answered within the first 5 hits 92% 90%
Question answered within the first 10 hits 94% 92%
50 Question / Answer bether than Fair (2,3,4)
Question answered with the 1 hit 64% 66%
Question answered within the first 5 hits 86% 86%
Question answered within the first 10 hits 94% 90%
50 Question / Answer better than Good (3,4)
Question answered with the 1 hit 38% 30%
Question answered within the first 5 hits 60% 48%
Question answered within the first 10 hits 70% 64%

thus in the capturing of content. As a result, it is much easier to retrieve
voice messages, lectures, videos and podcasts and, more importantly, search
them in a much more targeted manner. This provides many advantages for
digital learning, the indexing of audio books, the understanding of lectures
and much more. On the other hand, there are disadvantages to the technol-
ogy, which makes it much easier to monitor people and what they say. Here,
the undesirable statements made by target persons could be quickly filtered
out from large amounts of data. We very much hope that our findings will
be used in a positive sense for the development of free democratic societies.
This method is not limited simply to podcasts, but can be applied to all
kinds of text, eg. transcripts of videos, especially in our past publications
lecture videos in german language [23, 25, 26, 30].

6 Limitation
The collection of test data sets for the two TREC podcast tracks includes a
wide range of topics and formats. However, the podcasts come from only one
provider that offers common commercial podcast to a wide range of listeners.
Accordingly, specialized areas such as scientific lectures, highly theoretical
discussions, parliamentdebates, songs and more are not represented in our
test data.
The tests are based on podcast in the English language. It can be assumed
that the other Indo- European language families are subject to the same
basic law of word repetitions (𝑟𝑒𝑝𝑝𝑠) and therefore our method is equally
promising here. But what laws govern other language families and other
special subjects?
As previously mentioned, the optimal parameters of the 𝑠𝑐𝑜𝑟𝑒 function
for these other language families and likewise for special formats must be
examined and adapted if necessary. This question has not been answered
by our work and thus provides impetus for new research topics.
Our method is based on text. It is thus not only possible to index podcasts,
but also text archives and film libraries. This could not be examined with
the underlying test data.

References
[1] Thorsten Brants, Francine Chen, and Ioannis Tsochantaridis. 2002. Topic-Based

Document Segmentation with Probabilistic Latent Semantic Analysis. In Pro-
ceedings of the Eleventh International Conference on Information and Knowledge
Management (McLean, Virginia, USA) (CIKM ’02). Association for Computing
Machinery, New York, NY, USA, 211–218. doi:10.1145/584792.584829

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin.
2022. Overview of the TREC 2021 deep learning track. In Text REtrieval Conference
(TREC). TREC.

[3] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805

[4] Dominik Flejter, Karol Wieloch, and Witold Abramowicz. 2007. Unsupervised
Methods of Topical Text Segmentation for Polish. In Proceedings of the Workshop

on Balto-Slavonic Natural Language Processing. Association for Computational
Linguistics, Prague, Czech Republic, 51–58. https://aclanthology.org/W07-1707

[5] Petra Galuscáková, Suraj Nair, and DouglasW. Oard. 2020. Combine and Re-Rank:
The University of Maryland at the TREC 2020 Podcasts Track. In Proceedings of
the Twenty-Ninth Text REtrieval Conference, TREC 2020, Virtual Event [Gaithers-
burg, Maryland, USA], November 16-20, 2020 (NIST Special Publication, Vol. 1266),
Ellen M. Voorhees and Angela Ellis (Eds.). National Institute of Standards and
Technology (NIST). https://trec.nist.gov/pubs/trec29/papers/UMD_IR.P.pdf

[6] M.A.K. Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman, London,
UK. doi:10.4324/9781315836010

[7] Arezki Hammache and Mohand Boughanem. 2021. Term position-
based language model for information retrieval. Journal of the As-
sociation for Information Science and Technology 72, 5 (2021), 627–642.
arXiv:https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24431 doi:10.
1002/asi.24431

[8] Xiangji Huang, Fuchun Peng, Dale Schuurmans, Nick Cercone, and Stephen E.
Robertson. 2003. Applying Machine Learning to Text Segmentation for Informa-
tion Retrieval. Inf. Retr. 6, 3-4 (2003), 333–362. doi:10.1023/A:1026028229881

[9] Gareth J. F. Jones. 2019. About Sound and Vision: CLEF Beyond Text Retrieval
Tasks. Springer International Publishing. 307–329 pages.

[10] Karen Sparck Jones, SteveWalker, and Stephen E. Robertson. 2000. A probabilistic
model of information retrieval: development and comparative experiments - Part
2. Inf. Process. Manag. 36, 6 (2000), 809–840. doi:10.1016/S0306-4573(00)00016-9

[11] Jussi Karlgren, R Jones, B Carterette, A Clifton, M Eskevich, GJF Jones, Sravana
Reddy, Edgar Tanaka, andMI Tanveer. 2022. TREC 2021 Podcasts Track Overview.
In Text REtrieval Conference (TREC). NIST Special Publication. https://trec.nist.
gov/pubs/trec30/trec2021.html

[12] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.
2019. Quantifying the Carbon Emissions of Machine Learning. arXiv preprint
arXiv:1910.09700 (2019).

[13] Yuanhua Lv and ChengXiang Zhai. 2009. Positional language models for infor-
mation retrieval. In Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval (Boston, MA, USA) (SI-
GIR ’09). Association for Computing Machinery, New York, NY, USA, 299–306.
doi:10.1145/1571941.1571994

[14] Jane Morris and Graeme Hirst. 1991. Lexical cohesion computed by thesaural
relations as an indicator of the structure of text. Computational Linguistics 17, 1
(1991), 21–48.

[15] Hyo-Jung Oh, Sung Hyon Myaeng, and Myung-Gil Jang. 2007. Semantic passage
segmentation based on sentence topics for question answering. Information
Sciences 177, 18 (2007), 3696–3717. doi:10.1016/j.ins.2007.02.038

[16] Paul Owoicho and Jeff Dalton. 2020. Glasgow Representation and Information
Learning Lab (GRILL) at TREC 2020 Podcasts Track. In Proceedings of the Twenty-
Ninth Text REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland,
USA], November 16-20, 2020 (NIST Special Publication, Vol. 1266), EllenM. Voorhees
and Angela Ellis (Eds.). National Institute of Standards and Technology (NIST).
https://trec.nist.gov/pubs/trec29/papers/uog_msc.P.pdf

[17] Oyebade K. Oyedotun and Adnan Khashman. 2016. Document Segmentation Us-
ing Textural Features Summarization and Feedforward Neural Network. Applied
Intelligence 45, 1 (jul 2016), 198–212. doi:10.1007/s10489-015-0753-z

[18] Deepak P., Karthik Visweswariah, Nirmalie Wiratunga, and Sadiq Sani. 2012.
Two-Part Segmentation of Text Documents. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management (Maui, Hawaii,
USA) (CIKM ’12). Association for Computing Machinery, New York, NY, USA,
793–802. doi:10.1145/2396761.2396862

[19] Irina Pak and Phoey Lee Teh. 2018. Text Segmentation Techniques: A Critical
Review. Springer International Publishing, Cham, 167–181. doi:10.1007/978-3-

https://doi.org/10.1145/584792.584829
https://arxiv.org/abs/1810.04805
https://aclanthology.org/W07-1707
https://trec.nist.gov/pubs/trec29/papers/UMD_IR.P.pdf
https://doi.org/10.4324/9781315836010
https://arxiv.org/abs/https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.24431
https://doi.org/10.1002/asi.24431
https://doi.org/10.1002/asi.24431
https://doi.org/10.1023/A:1026028229881
https://doi.org/10.1016/S0306-4573(00)00016-9
https://trec.nist.gov/pubs/trec30/trec2021.html
https://trec.nist.gov/pubs/trec30/trec2021.html
https://doi.org/10.1145/1571941.1571994
https://doi.org/10.1016/j.ins.2007.02.038
https://trec.nist.gov/pubs/trec29/papers/uog_msc.P.pdf
https://doi.org/10.1007/s10489-015-0753-z
https://doi.org/10.1145/2396761.2396862
https://doi.org/10.1007/978-3-319-66984-7_10
https://doi.org/10.1007/978-3-319-66984-7_10

Dynamic Segmentation for Efficient Retrieval of Podcasts

319-66984-7_10
[20] Moayad Yousif Potrus, Umi Kalthum Ngah, and Bestoun S. Ahmed. 2014. An

evolutionary harmony search algorithm with dominant point detection for
recognition-based segmentation of online Arabic text recognition. Ain Shams
Engineering Journal 5, 4 (2014), 1129–1139. doi:10.1016/j.asej.2014.05.003

[21] Stephan Repp. 2009. Extraktion von semantischen Informationen aus audiovi-
suellen Vorlesungsaufzeichnungen : Sprachtranskripte der Vorlesungsvideos als
Informationsressource. dissertation. Hasso Plattner Institut, Universität Potsdam.
magna cum laude.

[22] Stephan Repp, Andreas Groß, and Christoph Meinel. 2008. Browsing within
Lecture Videos Based on the Chain Index of Speech Transcription. IEEE Trans.
Learn. Technol. 1, 3 (2008), 145–156.

[23] Stephan Repp, Serge Linckels, and Christoph Meinel. 2008. Question answering
from lecture videos based on an automatic semantic annotation. In Proceedings
of the 13th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2008, Madrid, Spain, June 30 - July 2, 2008, June Amillo,
Cary Laxer, Ernestina Menasalvas Ruiz, and Alison Young (Eds.). ACM, 17–21.

[24] Stephan Repp, Serge Linckels, and Christoph Meinel. 2008. Question Answering
from Lecture Videos Based on Automatically-Generated Learning Objects. In
Advances in Web Based Learning - ICWL 2008, 7th International Conference, Jin-
hua, China, August 20-22, 2008. Proceedings (Lecture Notes in Computer Science,
Vol. 5145), Frederick W. B. Li, Jianmin Zhao, Timothy K. Shih, Rynson W. H. Lau,
Qing Li, and Dennis McLeod (Eds.). Springer, 509–520.

[25] Stephan Repp and Christoph Meinel. 2006. Segmenting of Recorded Lecture
Videos - The Algorithm VoiceSeg. In SIGMAP 2006 - Proceedings of the Inter-
national Conference on Signal Processing and Multimedia Applications, Setúbal,
Portugal, August 7-10, 2006, SIGMAP is part of ICETE - The International Joint
Conference on e-Business and Telecommunications, Pedro A. Amado Assunção
and Sérgio M. M. de Faria (Eds.). INSTICC Press, 317–322.

[26] Stephan Repp and Christoph Meinel. 2006. Semantic Indexing for Recorded
Educational Lecture Videos. In 4th IEEE Conference on Pervasive Computing and
Communications Workshops (PerCom 2006 Workshops), 13-17 March 2006, Pisa,
Italy. IEEE Computer Society, 240–245. doi:10.1109/PERCOMW.2006.122

[27] Stephan Repp and ChristophMeinel. 2008. Segmentation of Lecture Videos Based
on Spontaneous Speech Recognition. In Tenth IEEE International Symposium
on Multimedia (ISM2008), December 15-17, 2008, Berkeley, California, USA. IEEE
Computer Society, 692–697. doi:10.1109/ISM.2008.20

[28] Stephan Repp and ChristophMeinel. 2008. Segmentation of Lecture Videos Based
on Spontaneous Speech Recognition. In Tenth IEEE International Symposium
on Multimedia (ISM2008), December 15-17, 2008, Berkeley, California, USA. IEEE
Computer Society, 692–697.

[29] Stephan Repp and Christoph Meinel. 2009. Automatic Extraction of Semantic
Descriptions from the Lecturer’s Speech. In Proceedings of the 3rd IEEE Inter-
national Conference on Semantic Computing (ICSC 2009), 14-16 September 2009,
Berkeley, CA, USA. IEEE Computer Society, 513–520.

[30] Stephan Repp, Jörg Waitelonis, Harald Sack, and Christoph Meinel. 2007. Seg-
mentation and Annotation of Audiovisual Recordings Based on Automated
Speech Recognition. In Intelligent Data Engineering and Automated Learning
- IDEAL 2007, 8th International Conference, Birmingham, UK, December 16-19,
2007, Proceedings (Lecture Notes in Computer Science, Vol. 4881), Hujun Yin, Peter
Tiño, Emilio Corchado, William Byrne, and Xin Yao (Eds.). Springer, 620–629.

doi:10.1007/978-3-540-77226-2_63
[31] J. Reynar. 1998. Topic Segmentation: Algorithm and applications. Ph. D. Disserta-

tion. University of Pennsylvania, Pennsylvania.
[32] Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 1995.

Large Test Collection Experiments on an Operational, Interactive System: Okapi
at TREC. Inf. Process. Manag. 31, 3 (1995), 345–360. doi:10.1016/0306-4573(94)
00051-4

[33] Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 1998.
Okapi at TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive. In Proceed-
ings of The Seventh Text REtrieval Conference, TREC 1998, Gaithersburg, Mary-
land, USA, November 9-11, 1998 (NIST Special Publication, Vol. 500-242), Ellen M.
Voorhees and Donna K. Harman (Eds.). National Institute of Standards and
Technology (NIST), 199–210.

[34] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In Proceedings of The Third Text
REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4,
1994 (NIST Special Publication, Vol. 500-225), Donna K. Harman (Ed.). National
Institute of Standards and Technology (NIST), 109–126. http://trec.nist.gov/
pubs/trec3/papers/city.ps.gz

[35] Martin Scaiano, Diana Inkpen, Robert Laganière, and Adele Reinhartz. 2010.
Automatic Text Segmentation for Movie Subtitles. In Advances in Artificial In-
telligence, Atefeh Farzindar and Vlado Kešelj (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 295–298.

[36] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AI.
Commun. ACM 63, 12 (nov 2020), 54–63. doi:10.1145/3381831

[37] Fei Song, William M. Darling, Adnan Duric, and Fred W. Kroon. 2011. An
Iterative Approach to Text Segmentation. In Advances in Information Retrieval,
Paul Clough, Colum Foley, Cathal Gurrin, Gareth J. F. Jones, Wessel Kraaij,
Hyowon Lee, and Vanessa Mudoch (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 629–640.

[38] K. Sparck Jones, S. Walker, and S.E. Robertson. 2000. A probabilistic model
of information retrieval: development and comparative experiments: Part 1.
Information Processing and Management 36, 6 (2000), 779–808. doi:10.1016/S0306-
4573(00)00015-7

[39] Nicola Stokes. 2004. Applications of Lexical Cohesion Analysis in the Topic Detection
and Tracking Domain. Ph. D. Dissertation. Department of Computer Science,
University College Dublin, Dublin.

[40] Yongze Yu, Jussi Karlgren, Ann Clifton, Md. Iftekhar Tanveer, Rosie Jones, and
Hamed R. Bonab. 2020. Spotify at the TREC 2020 Podcasts Track: Segment
Retrieval. In Proceedings of the Twenty-Ninth Text REtrieval Conference, TREC
2020, Virtual Event [Gaithersburg, Maryland, USA], November 16-20, 2020 (NIST
Special Publication, Vol. 1266), Ellen M. Voorhees and Angela Ellis (Eds.). National
Institute of Standards and Technology (NIST).

Copyright © 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use.
The definitive Version of Record was published in Proceedings of the 2024
International Conference on Multimedia Retrieval (ICMR ’24),
DOI: https://doi.org/10.1145/3652583.3658047

https://doi.org/10.1007/978-3-319-66984-7_10
https://doi.org/10.1016/j.asej.2014.05.003
https://doi.org/10.1109/PERCOMW.2006.122
https://doi.org/10.1109/ISM.2008.20
https://doi.org/10.1007/978-3-540-77226-2_63
https://doi.org/10.1016/0306-4573(94)00051-4
https://doi.org/10.1016/0306-4573(94)00051-4
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.1145/3381831
https://doi.org/10.1016/S0306-4573(00)00015-7
https://doi.org/10.1016/S0306-4573(00)00015-7

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Preprocessing
	3.2 Clustering of the thematically similar areas
	3.3 Calculation of the relevance of an index entry
	3.4 Searching the corresponding segments

	4 Results
	5 Conclusion
	6 Limitation
	References

