

ABSCHLUSS

Bachelor of Engineering (B.Eng.) + Abschluss in anerkanntem Ausbildungsberuf (ausbildungsintegriert)

REGELSTUDIENZEIT

7 Semester | 210 ECTS; zzgl. Praxisjahr im Unternehmen vorab (ausbildungsintegriert)

ZULASSUNGSMODUS

Zulassungsfrei, ohne NC

STUDIENTYP

Duales Studium (ausbildungsoder praxisintegriert) in Vollzeit

STUDIENBEGINN

Wintersemester

UNTERRICHTSSPRACHE

Deutsch

INTERNATIONALITÄT

Auslandssemester (optional)

STUDIENGEBÜHREN

Nur der Semesterbeitrag

ZULASSUNG

Allgemeine Hochschulreife, Fachhochschulreife oder besonderer Zugang für beruflich Qualifizierte + Ausbildungsvertrag in einem technischen Ausbildungsberuf bzw. Praktikumsvertrag mit einem Kooperationsunternehmen

INFORMATIONEN STUDIENGANG

Studiengangleitung

Prof. Dr. Dirk Brechtken Tel.: +49 651 8103-312

D. Brechtken (at) hoch schule-trier. de

Sekretariat:

sekretariat-et(at)hochschule-trier.de

Tel.: + 49 651 8103-342

WEITERE INFORMATIONEN

www.hochschule-trier.de/go/et-dual

EINSCHREIBUNG

www.hochschule-trier.de/go/bewerbung

STUDIENINHALTE

- ingenieurwissenschaftliche Grundlagenausbildung
- Erarbeitung von Lösungskonzepten für elektrotechnische Problemstellungen
- praxisnahe Projektarbeit in den Vertiefungsrichtungen "Automation und Energie" oder "Informationstechnologie und Elektronik"

BESONDERHEITEN DES STUDIUMS

- Verzahnung eines ingenieurwissenschaftlichen Studiums mit beruflicher Praxis
- Zwei Abschlüsse möglich (Doppelgualifikation)
- Finanzielle Unabhängigkeit durch aesichertes Einkommen
- Intensive Einblicke in betriebliche
 Strukturen und Abläufe

SKILLS | PERSÖNLICHE QUALIFIKATION

- Interesse an Technik und mathematischnaturwissenschaftlichen Themen
- Analytisches Denken
- Verlässlichkeit, Team- und Kommunikationsfähigkeit
- Überdurchschnittliches Engagement und Leistungsbereitschaft

BERUFSFELDER / PERSPEKTIVEN

- Hervorragende Karrierechancen z.B. in Elektronik- und Automobilindustrie, Energieversorgung, Medizin-, Umweltund Kommunikationstechnik
- Übernahme anspruchsvoller Aufgaben z.B. als Entwickler, Vertriebsingenieur oder Projektleiter

STUDIENVERLAUFSPLAN

Sem						
7	Projekt*				Abschlussarbeit	
6	Embedded Systems	Digitale Schaltungen	WPF	Fachseminar*	WPF	Labor 3
	Power Quality	Elektrische Sicherheit	Leistungselektronik			
5	Signale und Systeme	Rechnergestützte Entwurfswerkzeuge	Grundlagen der BWL	WPF	WPF*	Labor 2
	Elektrische Antriebstechnik	Netzinfrastruktur				
4	Mikroprozessor- technik	Telekommuni- kationstechnik	Passive Bauelemente	Technische Elektronik	Regelungs- technik 1	Labor 1
	Steuerungstechnik	Messgeräte und –systeme				
3	Systemtheorie	Halbleiterbau- elemente	Grundlagen der Elektronik	Hardwarenahe Programmierung	Elektrische und magnetische Felder	Grundlagenlabor
2	Analysis 2	Spezielle Themen der Physik	Grundlagen der Programmierung	Grundlagen der Elektrotechnik (Wechselstrom)	Sensorik	Grundlagenlabor*
1	Analysis 1	Klassische und moderne Physik	Lineare Algebra und Diskrete Strukturen	Grundlagen der Elektrotechnik (Gleichstrom)	Digitaltechnik	Grundlagenlabor

Vertiefungsrichtung Informationstechnologie und Elektronik

