MODULHANDBUCH
der Bachelor-Studiengänge im Fachbereich Informatik
Prüfungsordnung 2024
Inhaltsverzeichnis

Hinweise zu den Modulhandbucheinträgen ................................................................. 5
Externe Module .............................................................................................................. 5
Abschlussarbeit mit Kolloquium .................................................................................. 6
Abschlussarbeit mit Kolloquium (Transfer) ................................................................ 7
Algorithmen–Design ....................................................................................................... 8
Analysis und Numerik ................................................................................................. 10
Angewandte Logik .......................................................................................................... 12
Benutzung von Gestaltungswerkzeugen ...................................................................... 13
Betriebssysteme ............................................................................................................. 14
Big–Data–Technologien ................................................................................................. 15
Computergrafik ............................................................................................................. 16
C/C++–Programmierung ............................................................................................... 17
C#, .NET und Unity ....................................................................................................... 18
Datenbanken .................................................................................................................. 20
Datenstrukturen und Algorithmen ............................................................................... 21
Digitale Medien ............................................................................................................. 22
Digitale Spiele ................................................................................................................ 23
eHealth .......................................................................................................................... 24
Einführung in die Künstliche Intelligenz ....................................................................... 26
Einführung in die Programmierung .............................................................................. 27
Einführung in die Robotik .............................................................................................. 28
Eingebettete Echtzeitsysteme ...................................................................................... 29
Entwicklung mobiler Anwendungen ............................................................................ 30
Gesundheitstelematik .................................................................................................... 31
Gesundheitswesen und Medizinrecht .......................................................................... 33
Grundlagen der Gestaltung ........................................................................................... 35
Grundlagen der Medizin B ........................................................................................... 37
Grundlagen der Mensch–Computer–Interaktion ........................................................... 38
Grundlagen der Web–Technologien ............................................................................. 39
Grundlagen der Web–Technologien (Transfer) ............................................................ 40
Grundlagen des Anforderungsmanagements ............................................................... 42
IT–Sicherheit ................................................................................................................... 43
IT–Sicherheit mobiler Systeme .................................................................................... 45
IT–Sicherheitspraktikum ............................................................................................... 47
KI in der Anwendung ................................................................................................. 49
Kognitive Sichtsysteme ............................................................................................... 50
Kognitive Systeme ....................................................................................................... 52
Kryptologisches Programmierpraktikum .................................................................. 54
| Künstliche Intelligenz für Spiele .................................................. 56 |
| Labor Robotik ....................................................................................... 57 |
| Lineare Algebra .................................................................................. 59 |
| Maschinelles Lernen und Neuronale Netze ........................................ 60 |
| Mathematische Grundlagen .................................................................. 62 |
| Medienprojekt ....................................................................................... 63 |
| Medizinische Bildgebung ...................................................................... 64 |
| Medizinische Computergrafik ............................................................. 65 |
| Medizinische Statistik ........................................................................... 66 |
| Natural Language Processing ............................................................ 68 |
| Objektorientierte Programmierung – Grundlagen ................................ 69 |
| Objektorientierte Programmierung – Vertiefung ................................ 70 |
| Physiologielabor ................................................................................... 71 |
| Programmierparadigmen ..................................................................... 72 |
| Real-Time Rendering ........................................................................... 73 |
| Rechnernetze ......................................................................................... 74 |
| Robotersiehten ...................................................................................... 75 |
| Schlüsselkompetenzen ........................................................................ 76 |
| Semantic Web ....................................................................................... 78 |
| Seminar .................................................................................................... 79 |
| Signal- und Bildverarbeitung .............................................................. 80 |
| Software-Entwurf ................................................................................ 81 |
| Software-Management ......................................................................... 82 |
| Software-Qualitätssicherung ............................................................... 83 |
| Software-Qualitätssicherung (Transfer) ............................................... 84 |
| Spieleprogrammierung – Grundlagen ................................................ 86 |
| Spieleprogrammierung – Vertiefung .................................................. 87 |
| Symbolische Künstliche Intelligenz ..................................................... 88 |
| Systemadministration .......................................................................... 89 |
| Teamprojekt .......................................................................................... 90 |
| Teamprojekt (Transfer) ........................................................................ 91 |
| Technische Informatik .......................................................................... 92 |
| Theoretische Informatik ....................................................................... 94 |
| Therapeutic Games ............................................................................... 95 |
| Tool- und Plugin-Programmierung ..................................................... 97 |
| Usability Engineering und User Experience Design ............................ 98 |
| User Interface Design .......................................................................... 99 |
| Visualisierung ...................................................................................... 100 |
| Wahrscheinlichkeitsre公e und Statistik .............................................. 101 |
Hinweise zu den Modulhandbucheinträgen

- Die Dauer aller Module beträgt jeweils ein Semester.
- Die zeitliche Lage aller Module ergibt sich aus Anlage 1 bzw. Anlage 2 der Fachprüfungsordnung.
- Falls in einem Modul eine Studienleistung zu erbringen ist, ist diese gemäß § 6 der allgemeinen Prüfungsordnung Voraussetzung für die Zulassung zur Prüfung. Die semesteraktuelle Form der Studienleistung wird zu Beginn der Lehrveranstaltung bekannt gegeben.
- Bei Angabe mehrerer alternativer Prüfungsformen für ein Modul wird die semesteraktuelle Prüfungsform zu Beginn der Lehrveranstaltung bekannt geben.
- Voraussetzung für die Vergabe von ECTS-Punkten ist eine Bewertung der Prüfungsleistung mit mindestens der Note „ausreichend“.
- Die Gewichtung eines Modulergebnisses zur Bildung der Gesamtnote ergibt sich gemäß § 9 der Fachprüfungsordnung aus dem Verhältnis der ECTS-Punkte für das Modul und der Gesamtanzahl der ECTS-Punkte.

Externe Module

Neben den oben genannten Modulen werden weitere Module von anderen Fachbereichen angeboten, welche in den Bachelor-Studiengängen des Fachbereichs Informatik als Pflicht- oder Wahlpflichtmodul zur Verfügung stehen können:

Fachbereich Technik

- Computerassistierte Chirurgie
- Grundlagen der Medizin A
Abschlussarbeit mit Kolloquium

Inhalte

Lernergebnisse
Die Studierenden haben durch die erfolgreiche Bearbeitung gezeigt, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein Fachproblem selbstständig mit wissenschaftlichen Methoden zu bearbeiten. Sie verfügen über ein breites und integriertes Wissen, einschließlich der wissenschaftlichen Grundlagen sowie über ein kritisches Verständnis der wichtigsten Theorien und Methoden. Sie sind in der Lage, die im Studium erworbenen Kenntnisse, Fähigkeiten und Methoden auf neue Fragestellungen zu übertragen und darüber hinaus selbstständig um relevante Inhalte zu erweitern, zu bewerten und wissenschaftlich zu interpretieren. Sie leiten auf dieser Basis fundierte Lösungsansätze ab und formulieren eine dem Stand der Wissenschaft entsprechende Lösung für das Fachproblem. Sie können ihre Ergebnisse darüber hinaus in einem Kolloquium darlegen und argumentativ vertreten.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Wissenschaftliches Arbeiten“ und „Teamprojekt“. Weitere empfohlene Voraussetzungen abhängig von der Aufgabenstellung, werden vom Betreuer festgelegt.

Literatur
Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik ☒ PF ☒ WPF
Informatik (dual) ☒ PF ☒ WPF
Informatik – Digitale Medien und Spiele [Schwerpunkt Medien] ☒ PF ☒ WPF
Informatik – Digitale Medien und Spiele [Schwerpunkt Spiele] ☒ PF ☒ WPF
Künstliche Intelligenz und Data Science ☒ PF ☒ WPF
Medizininformatik ☒ PF ☒ WPF

Angebot
☐ Sommersemester ☒ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
12 60 Stunden 300 Stunden

Lehrende[r]
Dozenten des Fachbereichs Informatik

Modulverantwortliche[r]
Fachrichtungsleiter Informatik

Änderungsdatum
15.01.2024
# Abschlussarbeit mit Kolloquium (Transfer)

## Inhalte


**Transfer:**
- Lernorte sind sowohl die Hochschule wie auch der jeweilige Praxispartner.
- Die Aufgabenstellung wird gemeinsam mit dem Praxispartner, den Studierenden und dem jeweiligen Dozenten festgelegt.
- Die Abschlussarbeit wird in enger Zusammenarbeit beim Praxispartner erstellt.
- Die Betreuung der Abschlussarbeit erfolgt sowohl an der Hochschule durch den jeweiligen Dozenten oder die Dozentin bzw. beim Praxispartner durch den Betreuer oder die Betreuerin vor Ort.
- Die Prüfung findet an der Hochschule statt.

## Lernergebnisse

Die Studierenden haben durch die erfolgreiche Bearbeitung gezeigt, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein Fachproblem selbstständig mit wissenschaftlichen Methoden zu bearbeiten. Sie verfügen über ein breites und integriertes Wissen, einschließlich der wissenschaftlichen Grundlagen sowie über ein kritisches Verständnis der wichtigsten Theorien und Methoden. Sie sind in der Lage, die im Studium erworbenen Kenntnisse, Fähigkeiten und Methoden auf neue Fragestellungen zu übertragen und darüber hinaus selbstständig um relevante Inhalte zu erweitern, zu bewerten und wissenschaftlich zu interpretieren. Sie leiten auf dieser Basis fundierte Lösungsansätze ab und formulieren eine dem Stand der Wissenschaft entsprechende Lösung für das Fachproblem. Sie können ihre Ergebnisse darüber hinaus in einem Kolloquium darlegen und argumentativ vertreten.

## Lehrform

- [ ] Vorlesung
- [ ] Übung
- [ ] Seminar/Seminaristischer Unterricht
- [ ] Labor
- [x] Projekt

## Empfohlene Voraussetzungen


## Literatur

Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

## Studienleistung

- [ ] Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- [ ] Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- [ ] Bestehen von Leistungsstandkontrollen

## Prüfungsform

- [ ] Mündliche Prüfung
- [ ] Klausur
- [ ] Prüfung am PC
- [ ] Hausarbeit (ggf. mit Präsentation)
- [x] Projekt (ggf. mit Präsentation)

## Verwendbarkeit

<table>
<thead>
<tr>
<th>Fachbereich</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik (dual)</td>
<td>[x]</td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td>[PF]</td>
<td>[WPF]</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td>[PF]</td>
<td>[WPF]</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>[PF]</td>
<td>[WPF]</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>[PF]</td>
<td>[WPF]</td>
</tr>
</tbody>
</table>

## Angebot

- [x] Sommersemester
- [ ] Wintersemester
- [ ] Unregelmäßig

## Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>60 Stunden</td>
<td>300 Stunden</td>
</tr>
</tbody>
</table>

## Lehrende[r]

Dozenten des Fachbereichs Informatik

## Modulverantwortliche[r]

Fachrichtungsleiter Informatik

## Änderungsdatum

15.01.2024
### Algorithmen-Design

#### Inhalte
- Vorgehensweise algorithmisches Problemlösen mit Beispiel: Problembeschreibung, Modellierung, Algorithmen-Design, Analyse (Laufzeit, Korrektheit), Implementierung und Test
- Modellierung mit Graphen, Bäume, Tiefensuche in gerichteten und ungerichteten Graphen, Zusammenhangskomponenten, Breitensuche
- Lösungsräume und Lösungsbezüge, Exhaustive Search, Backtracking, Branch and Bound
- Greedy-Entwurfsmuster, Beispiel: Scheduling-Probleme, kürzeste Wege (Dijkstra, Prim), minimale Spannbäume (Kruskal), UnionFind-Datenstruktur, Clustering
- Divide and Conquer, Memoization, Beispiel: Punktepaar mit kleinem Abstand
- Rekursionsgleichungen, Methode des induktiven Einsetzens, Master-Theorem
- Prinzipien der Dynamische Programmierung, Entwurfsmuster, Beispiel: Scheduling-Probleme, kürzeste Wege (Bellman-Ford)
- Modellierung mit Flussnetzwerken, Residualgraph, Ford-Fulkerson-Algorithmus, maximale Matchings in bipartiten Graphen, Zirkulation mit unteren Schranken

#### Lernergebnisse
- Die Studierenden können
  - die Idee der Entwurfsmuster Exhaustive Search, Backtracking, Branch and Bound, Greedy, Divide and Conquer und Dynamische Programmierung sowie Beispielalgorithmen erklären,
  - Problemstellungen mit Hilfe mathematischer Datentypen, Graphen und Flussnetzwerken modellieren,
  - Algorithmen wie z.B. Breitensuch- und Tiefensuche, Dijkstra, Prim, Kruskal, Bellman-Ford, Ford-Fulkerson erklären und auf Beispielegeben anwenden,
  - Algorithmen hinsichtlich Korrektheit und Laufzeit analysieren,
  - Algorithmen anhand der asymptotischen Laufzeiten vergleichen,
  - die Laufzeit rekursiver Algorithmen mit einer Rekursionsgleichung beschreiben und in eine geschlossene Form überführen,
  - die Implementierung und Laufzeitmessung von einfachen Anwendungsfällen durchführen und die gemessenen Laufzeiten den theoretischen Ergebnissen gegenüberstellen sowie
  - Algorithmen für vorgegebene Aufgabenstellungen durch Einsatz der Algorithmen-Entwurfsmuster entwickeln.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
- Kompetenzen gemäß der Lernergebnisse der Module „Einführung in die Programmierung“, „Theoretische Informatik“ und „Datenstrukturen und Algorithmen“

#### Literatur

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit

<table>
<thead>
<tr>
<th>Fachbereich</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (auch dual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medizininformatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

#### Lehrende[r]
- Prof. Dr. H. Schmitz

#### Modulverantwortliche[r]
- Prof. Dr. H. Schmitz
Änderungsdatum 29.02.2024
## Analysis und Numerik

### Inhalte
- Analysis einer Veränderlichen:
  - Differential- und Integralrechnung
  - Taylorscher Satz
  - Gewöhnliche Differentialgleichungen
- Analysis mehrerer Veränderlicher:
  - partielle Ableitung, Gradient, Hesse-Matrix
  - Approximation erster und zweiter Ordnung
  - Notwendige und hinreichende Kriterien für Minima und Maxima
  - Optimalitätsskriterien unter Nebenbedingungen (Lagrange Multiplikatoren)
- Numerik
  - Numerische Integration
  - Verfahren zur Lösung nicht linearer Gleichungen (Newton-Verfahren)
  - Verfahren zur Lösung gewöhnlicher Differentialgleichungen (Euler-Verfahren, implizites Euler-Verfahren)
  - Matrizefaktorisierung und Eigenwertprobleme
  - Gradienten-Verfahren
  - Fehleranalyse numerischer Verfahren

### Lernergebnisse
Die Studierenden können
- die wesentlichen Inhalte der Veranstaltung wiedergeben,
- grundlegende Berechnungen im Bereich der Analysis und der Numerik, wie (partielle) Ableitungen, Integrale, Erwartungswerte, numerische Lösung von Differentialgleichungen usw. auch in unbekannten Aufgabenstellungen anwenden,
- die Definitionen und Sätze der Veranstaltung in einfachen Problemstellungen (wie in den Übungen) selbständig anwenden,
- die Anwendbarkeit und Grenzen der präsentierten mathematischen Konzepte in praktischen Aufgabenstellungen beurteilen, sowie
- sich selbständig in neue Anwendungen und Methoden der Analysis und Numerik, die einen unmittelbaren Zusammenhang mit den Inhalten der Veranstaltung haben, einarbeiten.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Lineare Algebra“

### Literatur
- F. Bornemann: Konkrete Analysis. Springer.

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
- Prof. Dr. H.-P. Beise
<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Prof. Dr. H.-P. Beise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungsdatum</td>
<td>11.10.2023</td>
</tr>
</tbody>
</table>
## Angewandte Logik

**Inhalte**

**Lernergebnisse**
- Die Anwendung logischer Sprachen zur Spezifikation, Problemstellung und zur Wissensrepräsentation
- Die Anwendung von Kalkül-Regeln, insbesondere der Resolution zur Beweissuche (zur Suche nach Problemlösungen).
- Grundlegende Problembeschreibungs- und Problemlösungsmethoden kennenlernen
- Kennenlernen konkreter industrieller Fragestellungen und deren Logik-bezogenen Lösungsansätze kennenlernen und anwenden
- Anwendung von Werkzeugen zur Spezifikation und Analyse variabler Strukturen

**Lehrform**
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

**Empfohlene Voraussetzungen**
Keine

**Literatur**

**Studienleistung**
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

**Prüfungsform**
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

**Verwendbarkeit**
- Informatik (auch dual)  [PF]  [WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]  [PF]  [WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]  [PF]  [WPF]
- Künstliche Intelligenz und Data Science  [PF]  [WPF]
- Medizininformatik  [PF]  [WPF]

**Angebot**
- Sommersemester  [ ]
- Wintersemester  [ ]
- Unregelmäßig  [ ]

**Arbeitsaufwand**
- ECTS-Punkte  5  Kontaktzeit  60 Stunden  Selbststudium  90 Stunden

**Lehrende[r]**
- Prof. Dr. G. Rock

**Modulverantwortliche[r]**
- Prof. Dr. G. Rock

**Änderungsdatum**
- 14.03.2024
### Benutzung von Gestaltungswerkzeugen

#### Inhalte
- Übersicht über die gängigen Gestaltungswerkzeuge
- Übersicht über die Adobe Creative Suite
- Einführung in Adobe Photoshop
- Einführung in Autodesk 3ds Max

#### Lernergebnisse
Die Studierenden lernen die gängigen Gestaltungswerkzeuge kennen, die im Bereich Digitale Medien und Spiele zum Tragen kommen. Sie können einfache Veränderungen an Media Assets selber ausführen.

#### Lehrform
- [x] Vorlesung
- [ ] Übung
- [ ] Seminar/Seminaristischer Unterricht
- [ ] Labor
- [ ] Projekt

#### Empfohlene Voraussetzungen
Keine

#### Literatur
Kompetenzen gemäß der Lernergebnisse des Moduls „Grundlagen der Gestaltung“

#### Studienleistung
- [x] Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- [ ] Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- [ ] Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- [ ] Mündliche Prüfung
- [ ] Klausur
- [ ] Prüfung am PC
- [ ] Hausarbeit (ggf. mit Präsentation)
- [x] Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual) [PF, WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) [PF, WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) [PF, WPF]
- Künstliche Intelligenz und Data Science [PF, WPF]
- Medizininformatik [PF, WPF]

#### Angebot
- [ ] Sommersemester [x] Wintersemester [ ] Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

#### Lehrende(r)
- Prof. Dr. T. Mentler

#### Modulverantwortliche(r)
- Prof. Dr. T. Mentler

#### Änderungsdatum
07.03.2024
## Betriebssysteme

### Inhalte
- Grundlagen und Konzepte moderner Betriebssysteme:
  - Historie der Betriebssystementwicklung
  - Rechneraufbau: Superskalarität, Hyperthreading, Multi-Core-Systeme
  - Ebenen der Parallelität
  - Protection, Kernel Mode, User Mode
  - Architektur von Betriebssystemen
  - Multiprocessing, Scheduling in Single-Core-Systemen
  - Interprozesskommunikation
  - Mutual Exclusion und Synchronisation
  - I/O (Programmed, Interrupt-Driven, via DMA)
  - Virtualisierung (Typ 1- und Typ 2-Hypervisor)
  - Ausgewählte Kapitel im Bereich Betriebssysteme (z.B. Embedded-, Echtzeitbetriebssysteme)
  - Beispiele (UNIX/Linux, MS Windows, OSEK/AUTOSAR OS)
  - Rechnerübungen in Python

### Lernergebnisse
Die Studierenden können die Prinzipien moderner Betriebssysteme und deren Grundkonzepte mit Fachbegriffen erläutern. Sie sind in der Lage zu beschreiben, welche Möglichkeiten zur nebenläufigen Ausführung moderne Rechnersysteme bieten und wie sich diese unterscheiden. Sie kennen die Herausforderungen nebenläufiger Programmierung und können die typischen von Betriebssystemen bereitgestellten Mechanismen verwenden, um nebenläufige Programme zu entwickeln. Sie können das Zusammenspiel von Scheduling, Synchronisationsmethoden und I/O-Verhalten analysieren und bewerten.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Systemadministration“, „Einführung in die Programmierung“ und „Objektorientierte Programmierung - Grundlagen“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
- Prof. Dr. J. Schneider

### Modulverantwortliche(r)
- Prof. Dr. J. Schneider

### Änderungsdatum
04.03.2024
### Big-Data-Technologien

#### Inhalte
- Definitionen von Big-Data
- Batch-Verarbeitung (z.B. Hadoop, Spark)
- Stream-Verarbeitung (z.B. Kafka Streams, Flink)
- NoSQL-Datenbanken
- Herausforderungen
  - Verteilung
  - Konsistenz: ACID und BASE, CAP-Theorem
  - Zeitbegriffe: Event- und Verarbeitungszeit
  - Durchsatz vs. Latenz
- Architektur von Big-Data-Landschaften

#### Lernergebnisse
Nach erfolgreicher Teilnahme können die Studierenden
- Eigenschaften von Big-Data-Systemen beschreiben,
- geeignete Big-Data-Technologien für gegebene Anwendungsfälle auswählen,
- gängige Systeme für Batch- und Streamverarbeitung anwenden,
- NoSQL-Datenbanken wie Key-Value-Stores, Dokumentendatenbanken und Wide-Column-Stores anwenden und
- die Architektur von Big-Data-Landschaften analysieren.

#### Lehrform
- ✔ Vorlesung
- ☐ Übung
- ☐ Seminar/Seminaristischer Unterricht
- ☐ Labor
- ☐ Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung - Grundlagen“ und „Datenbanken“

#### Literatur

#### Studienleistung
- ✔ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- ☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- ☐ Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- ✔ Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- ☐ Klausur
- ☐ Prüfung am PC
- ☐ Hausarbeit (ggf. mit Präsentation)
- ☐ Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik

#### Angebot
- ☐ Sommersemester ☒ Wintersemester ☐ Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

#### Lehrende(r)
- Prof. Dr. C. Schmitz

#### Modulverantwortliche(r)
- Prof. Dr. C. Schmitz

#### Änderungsdatum
- 17.10.2023
Computergrafik

Inhalte
Die Veranstaltung beschäftigt sich mit Verfahren zur Erzeugung visueller Darstellungen geometrischer Objekte im Computer. Sie umfasst die dazu notwendigen mathematischen Grundlagen zur Beschreibung geometrischer Modelle, sowie die theoretischen Grundlagen physikalischer Beleuchtungsmodelle. Aufbauend darauf werden praktische Fähigkeiten zur Implementierung unterschiedlicher Darstellungsverfahren vermittelt.
- Mathematische Grundlagen
- Kurven und Flächen
- Rastergrafik
- Grafik-Pipeline
- Ray Tracing
- Datenstrukturen
- Beleuchtungsmodelle

Lernergebnisse
Die Studierenden haben ein Verständnis für Modelle zur Beschreibung geometrischer Objekte in 2D und 3D erworben. Sie können Algorithmen zur Erzeugung visueller Darstellungen geometrischer Modelle bewerten und zielgerichtet umsetzen. Sie können insbesondere
- die mathematischen und physikalischen Grundlagen der Computergrafik verstehen und anwenden,
- Datenstrukturen und Algorithmen der Computergrafik bewerten und zielgerichtet umsetzen, sowie
- physikalische Modelle der Lichtausbreitung verstehen, bewerten und anwenden.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung - Grundlagen“, „Mathematische Grundlagen“ und „Datenstrukturen und Algorithmen“

Literatur

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual) ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] ☐ PF ☐ WPF
Künstliche Intelligenz und Data Science ☐ PF ☐ WPF
Medizininformatik ☐ PF ☐ WPF

Angebot
☒ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende[r]
Prof. Dr. C. Rezk-Salama

Modulverantwortliche[r]
Prof. Dr. C. Rezk-Salama

Änderungsdatum
14.03.2024
# C/C++-Programmierung

## Inhalte
- Einführung, Entwicklung von C und C++
- Grundlegende Begriffe, Compiler und Präprozessor
- Grundelemente von C++
- Datentypen, Operatoren und Ausdrücke, Anweisungen
- Benutzerdefinierte und zusammengesetzte Datentypen
- Einfache Ein- und Ausgabe
- Programmstrukturierung: Funktionen (Definition, Deklaration, Parameterübergabe, Überladen)
- Programmstrukturierung: Modularer Aufbau von Programmen
- Zeiger und Referenzen, Arrays, Strings, dynamische Objekte
- Objektorientierte Programmierung: Klassen und Objekte, Initialisierung, Speicherverwaltung, Operatorüberladung, Klassenvariablen und Klassenmethoden
- Vererbung, Polymorphismus, abstrakte Klassen, Mehrfachvererbung
- Templates
- Ausnahmebehandlung
- Dateien und Ströme
- Die C++-Standardbibliothek: Aufbau und Übersicht
- Unterschiede C vs. C++

## Lernergebnisse
Die Programmiersprachen C und C++ sind sehr weit verbreitet; nahezu jeder Softwareentwickler wird sich früher oder später damit auseinandersetzen müssen. Die Studierenden können
- alle wichtigen Elemente der Programmiersprache C++ anwenden,
- C++-Programme analysieren und erstellen,
- die C++-Standardbibliothek verwenden.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls "Objektorientierte Programmierung - Grundlagen"

## Literatur

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungstestkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
- Informatik (auch dual) [PF] [WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) [PF] [WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) [PF] [WPF]
- Künstliche Intelligenz und Data Science [PF] [WPF]
- Medizininformatik [PF] [WPF]

## Angebot
- Sommersemester [ ] Wintersemester [ ] Unregelmäßig

## Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

## Lehrende(r)
- Prof. Dr. J. Graf

## Modulverantwortliche(r)
- Prof. Dr. J. Graf

## Änderungsdatum
- 12.01.2023
# C#, .NET und Unity

## Inhalte

- **C#**
  - Basics: Datentypen, Flusskontrolle, ref- und out-Modifier
  - Klassen: Schutzmechanismen, Modifier, Properties, Vererbung, Namespaces, Assemblies
  - Klassen 2: Interfaces, Structs, Indexer, Operatorüberladung, Delegaten
  - Spezialitäten 1: Delegates und Events, Exceptions, Arrays, Generics, Nullable Types
  - Spezialitäten 2: Enumerationen und Sortierungsmechanismen, yield-Statement, Containerklassen, Tuples
  - Spezialitäten 3: Threading, Async/Await, parallel for, LINQ

- **.NET**
  - Übersicht über .NET: Konfiguration und Deployment, Diagnostic und Serialization, Automatisierung
  - GUI-Programmierung: Windows Presentation Foundation, Asynchrone GUIs, 2D- und 3D-Grafik in WPF
  - Web-Programmierung: Anbindung von Datenbanken, ASP.NET Web-Sites, Implementierung von Web Services

- **Unity**
  - Aufbau von Unity, Entity Component, Prefabs, Tags und Layers, Asset Verwaltung, Import von Assets
  - Lebenslauf GameObject, Tätigkeiten mit GameObjects (Finden, Erzeugen, Zerstören), Components und Manipulation dieser, Assets programmatisch ansprechen, Components im Editor
  - Kontrollfluss: Co-Routinen vs States, Invocation, Messages, Unity Events, Paralleles Programmieren in Unity
  - Physics Engine, Animation Engine, Sound Engine, Input-Systeme, UI-System
  - Low-level-Programmierung: Erstellen und Verändern eigener Meshes, render to texture, Editorprogrammierung

## Lernergebnisse

Die Studierenden können
- die wesentlichen Grundbegriffe und Zusammenhänge der Themenbereiche C#, .NET und Unity erklären, sowie
- Programme in C# sowohl in der .NET- als auch Unity-Umgebung schreiben.

## Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse des Moduls „Objektorientierte Programmierung - Grundlagen“

## Literatur


## Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform

- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit

- Informatik (auch dual)  PF  WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)  PF  WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)  PF  WPF
- Künstliche Intelligenz und Data Science  PF  WPF
- Medizininformatik  PF  WPF

## Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

## Arbeitsaufwand

- ECTS-Punkte
- Kontaktzeit: 5
- Selbststudium: 60 Stunden
- 90 Stunden

## Lehrende[r]

- Prof. Dr. C. Lürig

## Modulverantwortliche[r]

- Prof. Dr. C. Lürig
### Inhalte
- Modellierung mit dem Entity-Relationship-Modell, Transformation in das relationale Modell
- Abfrage und Manipulation relationaler Datenbanken mit SQL
- Definition von Tabellenstrukturen und Integritätsbedingungen
- Data Dictionary
- Abarbeitung von SQL-Anfragen, Optimizer
- Transaktion und Isolation Level, Deadlock
- Funktionale Abhängigkeiten, Normalformen
- Datenbankzugriff JDBC und JPA

### Lernergebnisse
Nach erfolgreicher Teilnahme an der Vorlesung können die Studierenden
- Datenbanken im Entity-Relationship-Modell modellieren und unter Einhaltung anerkannter Qualitätskriterien in das relationale Modell abbilden,
- relationale Datenbanken mit SQL implementieren,
- Anfragen in SQL stellen und deren Umsetzung mit Hilfe relationaler Algebra darstellen,
- Anwendungen mit relationalen Datenbanken implementieren und
die Konsistenz und Struktur von Datenbanken durch Normalisierung, Integritätsbedingungen und Transaktionen absichern.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung - Grundlagen“, und „Mathematische Grundlagen“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

### Angebot
- Sommersemester [ ], Wintersemester [ ], Unregelmäßig [ ]

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
- Prof. Dr. C. Schmitz

### Modulverantwortliche(r)
- Prof. Dr. C. Schmitz

### Änderungsdatum
- 22.11.2022
# Datenstrukturen und Algorithmen

## Inhalte
- Einführung in die wichtigsten Datenstrukturen von Programmiersprachen
  - Sequenzen, Listen
  - Stacks, Queues
  - Hashing
  - Binäre [Such-]Bäume, AVL-Bäume, Heaps
  - Einführung in grundlegende Such- und Sortierverfahren
  - Laufzeit- und Speicherplatzbetrachtungen

## Lernergebnisse
Die Studierenden
- haben die grundlegenden Datenstrukturen und Algorithmen gelernt,
- verstehen deren Wechselwirkungen, insbesondere unter Laufzeit- und Speicherplatzbetrachtungen, und können diese auf praktische Beispiele anwenden,
- verstehen die wesentlichen Such- und Sortieralgorithmen und können diese nach Anwendungsszenarien beurteilen und auswählen,
- können die grundlegenden Datenstrukturen und Algorithmen in Python umsetzen.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Einführung in die Programmierung“

## Literatur
- T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen. Springer Vieweg...

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

## Angebot
- Sommersemester [ ] Wintersemester [ ] Unregelmäßig [ ]

## Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

## Lehrende(r)
- Prof. Dr. G. Schneider

## Modulverantwortliche(r)
- Prof. Dr. G. Schneider

## Änderungsdatum
- 29.02.2024
## Digitale Medien

### Inhalte
- Einführung
- Digitalisierung
- Informationstheoretische Grundlagen und universelle Kompression
- Licht und Farbe
- Rastergrafik
- Vektorgrafik
- Video
- Audio
- Text

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)  PF  WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)  PF  WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)  PF  WPF
- Künstliche Intelligenz und Data Science  PF  WPF
- Medizininformatik  PF  WPF

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]
Christian Bettinger, M.Sc.

### Modulverantwortliche[r]
Christian Bettinger, M.Sc.

### Änderungsdatum
22.11.2022
### Digitale Spiele

#### Inhalte

- Übersicht über die verschiedenen analytischen Methoden zum Thema Game Design (MDA, Ludus vs. Paida)
- Übersicht über praktische Entwurfstechniken im Game Design (CCC, 3-Aktivitätsmethode)
- Aufbau der Spieleindustrie mit ihren verschiedenen Funktionen (Developer, Publisher Relation, Welche Berufe gibt es in der Branche)
- Produktionsweise von Spielen (Vier-Phasen-Modell, Welche Artefakte werden erzeugt, historischer Abriss)
- Einführung in den technischen Aufbau von Spielen (Engine-Konzept, Kerninteraktionsschleife, wesentliche technische Komponenten)

#### Lernergebnisse


#### Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen

Keine

#### Literatur


#### Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform

- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit

<table>
<thead>
<tr>
<th>Verwendungsbereich</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (auch dual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

#### Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

#### Lehrende[r]

- Prof. Dr. C. Lürig

#### Modulverantwortliche[r]

- Prof. Dr. C. Lürig

#### Änderungsdatum

22.11.2022
eHealth

Inhalte

Lernergebnisse
Studierende wurden in die Lage versetzt, die grundlegenden Konzepte, Technologien und Anwendungen des eHealth zu verstehen und zu erklären, die Bedeutung und den Nutzen von Gesundheitsdokumentation und Gesundheitsinformationssystemen im Kontext von eHealth zu bewerten, die Herausforderungen und Lösungsansätze bei der Implementierung von eHealth-Projekten zu identifizieren, Datenschutz und Datensicherheit im Bereich eHealth zu beurteilen. Aus den klassischen Krankenhausinformationssystemen können die Studierenden die Erfordernisse von Dokumentation beschreiben; sie wissen, wie diese mit Verwendung von Aktensystemen realisiert wird. Weiterhin können die Studierenden Details zu den wichtigen Standards der Kommunikation und der Dokumentation benennen und erläutern: HL7-V2, HL7-V3, CDA, FHIR, DICOM, IHE-Profile, SNOMED-CT, LOINC, ICD, ICF, OPS, ICPM, ICHI und die Abrechnungsarbeiten EBM, CDA, die damit verbundenen DRGs, sowie deren Zusammenhänge untereinander (z.B. ICD10 zu EBM, DRG und mRSA) können von den Studierenden dargelegt werden. Die Frage, ob und wann Software ein Medizinprodukt ist, dient als Beispiel der Dokumentation zur Qualitätssicherung und Qualitätsverbesserung bei der Entwicklung informationstechnischer Lösungen.

Lehrform
☑ Vorlesung
☑ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“, „Lineare Algebra“ und „Analysis und Numerik“

Literatur

Studienleistung
☑ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual)
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
Künstliche Intelligenz und Data Science
Medizininformatik

Angebot
☑ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden
<table>
<thead>
<tr>
<th>Lehrende(r)</th>
<th>Prof. Dr. S. Benzschawel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. S. Benzschawel</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>28.02.2024</td>
</tr>
</tbody>
</table>
## Einführung in die Künstliche Intelligenz

### Inhalte
Diese Vorlesung gibt einen Überblick über Ansätze in der symbolischen und subsymbolischen künstlichen Intelligenz. Auch wichtige Aspekte wie Erklärbarkeit und Fairness im Kontext der künstlichen Intelligenz werden behandelt. Betrachtete Inhalte sind:
- Natürliche und künstliche Intelligenz
- Suche
  - Uniformierte Suche
  - Informierte Suche
- Wissensrepräsentation und Schließen aus Wissen
- Lernen aus Daten
  - Überwachtetes, unüberwachtetes und verstärkendes Lernen
  - Beispiele für maschinelle Lernverfahren: Entscheidungsbäume, neuronale Netze
- Generative KI
- Erklärbarkeit
- Verantwortung und Fairness in der künstlichen Intelligenz

### Lernergebnisse
Die Studierenden können Ansätze der künstlichen Intelligenz der symbolischen oder subsymbolischen künstlichen Intelligenz zuordnen, können entscheiden, welche Algorithmen der KI für die Lösung eines gegebenen Problems geeignet sind, können grundlegende Algorithmen aus den behandelten Bereichen eigenständig implementieren, sind sensibilisiert dafür, dass der Einsatz von Systemen der künstlichen Intelligenz verantwortungsbewusst erfolgen sollte und dass Fairness ein wichtiges Thema in der künstlichen Intelligenz ist.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
Prof. Dr. C. Schon

### Modulverantwortliche(r)
Prof. Dr. C. Schon

### Änderungsdatum
02.02.2024
# Einführung in die Programmierung

## Inhalte
- Systematisch programmieren lernen mit Python
  - Programme entwickeln: Was ist ein Programm? Arithmetische Operationen, Werte und Typen, formale und natürliche Sprachen, Debugging
  - Variablen, Ausdrücke und Anweisungen
  - Funktionen: Programmablauf, Parameter und Argumente, Funktionen mit und ohne Rückgabewert
  - Bedingungen und Rekursion
  - Funktionen mit Rückgabewert
  - Iteration: Schleifen, Suche, weitere Algorithmen
  - Weitere Datentypen: Strings, Listen, Dictionaries, Tupel
  - Umgang mit Dateien
  - Fallstudien zu ausgewählten Themen
  - Fehlerbehandlung und Ausnahmen, Debugging - Techniken
- Funktionen mit Rückgabewert
- Iteration: Schleifen, Suche, weitere Algorithmen
- Weitere Datentypen: Strings, Listen, Dictionaries, Tupel
- Umgang mit Dateien
- Fallstudien zu ausgewählten Themen
- Fehlerbehandlung und Ausnahmen, Debugging - Techniken
- Ausblick auf spezielle Module: NumPy, SciPy, Matplotlib und Jupyter Notebooks

## Lernergebnisse
Die Studierenden sind nach Abschluss des Moduls in der Lage:
- die grundlegenden Konzepte der Programmierung zu verstehen und anzuwenden,
- Python-Programme zu schreiben, zu lesen, zu analysieren und zu debuggen,
- einfache Algorithmen zu implementieren und Datenstrukturen in Python zu verwenden,
- Probleme zu analysieren und effektive Lösungen unter Verwendung von Python zu entwickeln,
- die Bedeutung von Modularität und Wiederverwendbarkeit von Code zu erkennen und entsprechend zu handeln.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Keine

## Literatur

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik

## Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

## Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
- 90 Stunden
- 120 Stunden

## Lehrende[r]
Prof. Dr. Heinz Schmitz

## Modulverantwortliche[r]
Prof. Dr. Heinz Schmitz

## Änderungsdatum
28.02.2024
# Einführung in die Robotik

## Inhalte
- Kinematik, Dynamik, Regelung und Systementwurf:
  - Einführung in das Themengebiet
  - Repräsentation und Transformationen
  - Kinematik
  - Inverse Kinematiken (geometrisch, algebraisch, numerisch)
  - Die Jakobi-Matrix
  - Dynamik
  - Generierung von Trajektorien
  - Entwurf von Manipulatoren
  - Lineare Regelung
  - Nichtlineare Regelung
  - Kräftebasierte Regelung
  - Roboterprogrammierung und Architekturmuster

Die Unterlagen sind in englischer Sprache verfasst, die Unterrichtssprache ist Deutsch.

## Lernergebnisse

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Lineare Algebra“ und „Analysis und Numerik“

## Literatur

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
- Informatik (auch dual)  
  - PF  
  - WPF  
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]  
  - PF  
  - WPF  
- Informatik -_digitale Medien und Spiele [Schwerpunkt Spiele]  
  - PF  
  - WPF  
- Künstliche Intelligenz und Data Science  
  - PF  
  - WPF  
- Medizininformatik  
  - PF  
  - WPF

## Angebot
- Sommersemester  
- Wintersemester  
- Unregelmäßig

## Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

## Lehrende(r)
- Prof. Dr. J. Graf

## Modulverantwortliche(r)
- Prof. Dr. J. Graf

## Änderungsdatum
17.05.2024
## Eingebettete Echtzeitsysteme

### Inhalte
- Klassen eingebetteter Systeme
- Echtzeitbegriff, weiche und harte Echtzeitanforderungen
- Zusammenhang zwischen Safety und Echtzeit
- Unterschied Echtzeit und Performanz
- Typische Anwendungsgebiete und Randbedingungen
  - Verlässliche Systeme (Dependable Systems)
  - Cyber-Physical Systems
- Architektur und Programmierung eingebetteter Systeme
- Entwicklungsparadigmen für Echtzeitsysteme: Time-triggered und Event-triggered
- Schedulingverfahren für Echtzeitsysteme, u.a. Rate Monotonic, Deadline Monotonic, Earliest Deadline First
- Echtzeitscheduling unter
  - AUTOSAR
  - Linux
- Nachweis der Einhaltung von Echtzeitanforderungen: Schedulability Analyse, WCET-Analyse
- Anwendungsbeispiele, z.B. Automatisiertes Fahren, ESP, Motorsteuerung, Fahrerassistenzsysteme, Videostreaming

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Systemadministration“ und „Einführung in die Programmierung“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

### Angebot
- Sommersemester [ ] Wintersemester [ ] Unregelmäßig [ ]

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]
Prof. Dr. J. Schneider

### Modulverantwortliche[r]
Prof. Dr. J. Schneider

### Änderungsdatum
04.03.2024
Entwicklung mobiler Anwendungen

Inhalte

Lernergebnisse

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung - Grundlagen“ und „Objektorientierte Programmierung – Vertiefung“

Literatur

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/-Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual) ☐ PF ☒ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] ☐ PF ☒ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] ☐ PF ☒ WPF
Künstliche Intelligenz und Data Science ☐ PF ☒ WPF
Medizininformatik ☐ PF ☒ WPF

Angebot
☐ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende(r)
Prof. Dr. G. Rock, Prof. Dr. G. Schneider, Christian Bettinger, M.Sc.

Modulverantwortliche(r)
Prof. Dr. G. Rock

Änderungsdatum
04.03.2024
### Gesundheitstelematik

#### Inhalte
- Begriffswelt Gesundheitstelematik
- Historie und Definitionen
- Telemedizin und Teleausbildung
- Telematik für die medizinische Forschung und für das Gesundheitsmanagement
- Europäische Aktivitäten
- E-Health in Deutschland
- Versorgungsformen und Telematikbedarf
- Alternative Speicherlösungen
- eHealth Standards und Interoperabilität
- Sicher Kommunikation und adäquate Verschlüsselungsverfahren
- IHE Connectathon und ITI Profile
- Datenschutz und rechtliche Grundlagen
- Cloudcomputing und aktuelle Trends
- Personalisierte Medizin

#### Lernergebnisse
Die Studierenden haben einen Einblick in die Gesundheitstelematik erhalten. So können sie
- diverse Einsatzfelder der Gesundheitstelematik benennen und unterscheiden,
- die beteiligten Akteure im Gesundheitswesen vorstellen und deren jeweils erwarteter Nutzen durch die Einsatzfelder der Gesundheitstelematik skizzieren,
- aktuelle Themen und Strömungen auf europäischer, sowie nationaler Ebene erarbeiten und vorstellen,
- neue Versorgungsformen und deren Bedarf an Telematik deuten,
- Interoperabilitätsstandards zusammenfassen und einordnen,
- die Rolle von IHE sowie die ITI-Profile darstellen und die wesentlichen Aktenformen unterscheiden,
- die Herausforderungen und Schwierigkeiten einer sicheren, elektronischen Kommunikation im deutschen Gesundheitswesen erörtern,
- die Einsatzvoraussetzungen von Verschlüsselungsverfahren im Kontext der sektorübergreifenden Kommunikation erläutern,
- aktuelle Hindernisse und Lösungsansätze zur intersektoralen Kommunikation herausstellen,
- die besonderen Aspekte und Richtlinien des Datenschutzes in der Gesundheitstelematik aufzeigen.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Englische Texte lesen und bearbeiten können

### Literature

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) | PF | WPF
- Informatik – Digitale Medien und Spiele (Schwerpunkt Medien) | PF | WPF
- Informatik – Digitale Medien und Spiele (Schwerpunkt Spiele) | PF | WPF
<table>
<thead>
<tr>
<th>Künstliche Intelligenz und Data Science</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

**Angebot**
- ☐ Sommersemester
- ☑ Wintersemester
- ☒ Unregelmäßig

**Arbeitsaufwand**

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

**Lehrende(r)**
- Prof. Dr. S. Benzschawel

**Modulverantwortliche(r)**
- Prof. Dr. S. Benzschawel

**Änderungsdatum**
- 22.03.2024
**Gesundheitswesen und Medizinrecht**

### Inhalte
- Historische Entwicklung des deutschen Gesundheitssystems
- Grundprinzipien sozialer Sicherung im Krankheitsfall
- Grundstrukturen des deutschen Gesundheitssystems
- Gesetzliche Krankenversicherung
- Private Krankenversicherung
- Ambulante Ärztliche Versorgung - Finanzierung und Abrechnung
- Arzneimittelversorgung - Finanzierung und Abrechnung
- Krankenhausversorgung - Finanzierung und Abrechnung
- Pflegeversicherung
- Ambulante und stationäre Pflege
- Juristische Aspekte
- Datenschutz-Aspekte
- Defizite des deutschen Gesundheitssystems
- Messung von Behandlungsergebnissen
- Leitlinien eines nutzenorientierten Gesundheitssystems

### Lernergebnisse
In dieser Veranstaltung lernen die Studierenden die gegenwärtige Struktur und Funktionsweise des deutschen Gesundheitssystems und seiner Teilsysteme kennen. Die historischen Grundlagen reichen zurück bis ins Mittelalter und prägen heute noch Kernbereiche des deutschen Gesundheitssystems: Die hälftige Beteiligung des Arbeitgebers (der Meister im Mittelalter) an den Kosten der „Krankenversicherung“ seiner Gesellen war ebenso üblich wie später die hälftige Beteiligung an der sozialen Sicherung der Bergwerksarbeiter durch die Bergwerksbesitzer oder des Fabrikbesitzers an der sozialen Sicherung der Fabrikarbeiterinnen und -arbeiter.


Das Lernziel ist die Bildung der Wissensgrundlage zu den oben aufgeführten Teilbereichen des deutschen Gesundheitswesens und die darauf basierende Befähigung, permanente politische und gesellschaftliche Veränderungstendenzen im Kontext zu erfassen und deren Auswirkungen objektiv bewerten zu können.

### Lehrform
- ☐ Vorlesung
- ☑ Übung
- ☐ Seminar/Seminariistischer Unterricht
- ☐ Labor
- ☐ Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur

### Studienleistung
- ☑ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- ☑ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- ☑ Bestehen von Leistungsstandkontrollen

### Prüfungsform
- ☐ Mündliche Prüfung
- ☐ Klausur
- ☑ Prüfung am PC
- ☐ Hausarbeit (ggf. mit Präsentation)
- ☐ Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- ☑ Informatik (auch dual) [PF ☑ WPF]
- ☑ Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF ☑ WPF]
- ☑ Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF ☑ WPF]
- ☑ Künstliche Intelligenz und Data Science [PF ☑ WPF]
- ☑ Medizininformatik [PF ☑ WPF]

### Angebot
- ☐ Sommersemester
- ☐ Wintersemester
- ☑ Unregelmäßig

### Arbeitsaufwand
- ☑ ECTS-Punkte
- ☐ Kontaktzeit
- ☐ Selbststudium

33
<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>60 Stunden</th>
<th>90 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende[r]</td>
<td>Prof. Dr. S. Benzschawel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. S. Benzschawel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>22.03.2024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grundlagen der Gestaltung

**Inhalte**
- Prozesshaftes Entwerfen hinsichtlich Produkt/Inhalt und abgeleiteten zu vermittelnden Botschaften
- Auseinandersetzung mit zielgruppenspezifischen Bildsprachen und visueller Rhetorik
- Entwurf nach Problemlösungs-Prinzip unter Vorgabe von medienspezifischen Projekten
- Simulationen realer Auftrags- und Arbeitssituationen.

**Lernergebnisse**
- Die Lehrveranstaltung vermittelt die Fähigkeit, Design im weiteren Sinne zu vermitteln und/oder zu reflektieren:
  - Techniken, Werkzeuge und Medien zu schulen
  - Verschiedene Arten der Visualisierung als Teil des Entwurfsprozesses und der Vermittlung zu nutzen
  - Zwischen- und Endergebnisse für Dritte aufzubereiten und verständlich zu vermitteln
  - Die überzeugende Präsentation als wichtigen Faktor des eigenen Erfolges zu verstehen
  - Annäherung an die Methodik des Entwerfens
  - Befähigung zur Entwicklung medienspezifischer visueller Kommunikationskonzepte
  - Entwurf nach Problemlösungs-Prinzip unter Vorgabe von medienspezifischen Projekten
  - Ideenfindung und konzeptionelle Fantasie unter Vorgabe von medienspezifischen Projekten und Zielgruppen
  - Wissenserschließung
    - Simulationen realer Auftrags- und Arbeitssituationen
    - Vertiefung der Praxis des Skizzierens und Entwerfens
    - Auseinandersetzung mit zielgruppenspezifischen Bildsprachen, visueller Rhetorik sowie wirtschaftlichen, kulturellen, wissenschaftlichen und pädagogischen Informationstransfers
    - Visuelle Darstellungsmöglichkeiten hinsichtlich Produkt und abgeleitete zu vermittelnde Botschaften
  - Literatur und Durchführung einer Präsentation
    - Einsatz verschiedener Medien
    - Förderung eigener Präsentationsfähigkeiten und Argumentationsstrukturen
    - Diskussionsfähigkeit in Einzelkonsultationen und im Plenum

**Lehrform**
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

**Empfohlene Voraussetzungen**
Keine

**Literatur**

**Studienleistung**
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

**Prüfungsform**
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

**Verwendbarkeit**

<table>
<thead>
<tr>
<th>Fachbereich</th>
<th>Pflichtfächer (PF)</th>
<th>Wahlfächer (WPF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (auch dual)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

**Angebot**
- Sommersemester
- Wintersemester
- Unregelmäßig

**Arbeitsaufwand**
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden
<table>
<thead>
<tr>
<th>Lehrende(r)</th>
<th>Prof. Dr. T. Mentler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. T. Mentler</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>26.01.2023</td>
</tr>
</tbody>
</table>
Grundlagen der Medizin B

Inhalte

- Terminologische Grundbegriffe (Richtungen, Ebenen, Bezeichnungen): Strukturen und Funktionen des Körpers im Überblick, Wichtige funktionelle Systeme
- Die Zelle – Zytologie: Zellbestandteile, Stoffwechselprozesse, Enzyme
- Gewebe – Histologie: Epithelien, Bindegewebe, Muskelgewebe, Nervengewebe
- Physiologie erregbarer Zellen: Synapsen, Rezeptoren, Transmittersubstanzen, Membranpotential, Na-K-Pumpe, Elektrotonus, Aktionspotentiale, Neuromuskuläre Synapse
- Nervensystem: Allgemeiner Aufbau, Gehirn, Rückenmark, Hirnhäute, Blutversorgung, Motorische Systeme, Reflexe, Hirnnerven und Sinnesorgane
- Herz-Kreislaufsystem, Blut: Aufbau und Struktur, Anatomie und Physiologie des Herzens, Sauerstofftransport
- Atmungssystem: Strukturen, Atemmechanik und Lungenvolumina
- Niere und Säure-Basen-Haushalt
- Anatomie und Physiologie des Gehörs

Lernergebnisse

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Keine

Literatur
Huch, Renate, Jürgens, Klaus D.: Mensch Körper Krankheit. Urban & Fischer Verlag/Elsevier

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual) PF WPF
- Informatik – Digitale Medien und Medien [Schwerpunkt Medien] PF WPF
- Informatik – Digitale Medien und Medien [Schwerpunkt Spiele] PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand
- ECTS-Punkte Kontaktzeit Selbststudium
  5 120 Stunden 30 Stunden

Lehrende[r]
- Lehrbeauftragte[r]

Modulverantwortliche[r]
- Prof. Dr. J. Lohscheller

Änderungsdatum
27.01.2023
<table>
<thead>
<tr>
<th>Grundlagen der Mensch-Computer-Interaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inhalte</strong></td>
</tr>
<tr>
<td>- Einführung in den Zusammenhang Mensch-Aufgabe-Computer</td>
</tr>
<tr>
<td>- Entwicklung der Mensch-Computer-Interaktion und Software-Ergonomie</td>
</tr>
<tr>
<td>- Normen und rechtliche Grundlagen</td>
</tr>
<tr>
<td>- Menschliche Informationsverarbeitung und Handlungsprozesse</td>
</tr>
<tr>
<td>- Ein- und Ausgabegeräte</td>
</tr>
<tr>
<td>- Interaktionstechniken</td>
</tr>
<tr>
<td>- Menschzentrierter Entwicklungsprozess</td>
</tr>
<tr>
<td>- Barrierefreiheit, Accessibility und Inclusive Design</td>
</tr>
<tr>
<td>- Forschungsmethoden</td>
</tr>
<tr>
<td><strong>Lernergebnisse</strong></td>
</tr>
<tr>
<td>Studierende können nach erfolgreicher Teilnahme</td>
</tr>
<tr>
<td>- die Relevanz von Benutzungsschnittstellen für die Qualität computerbasierter Lösungen einordnen,</td>
</tr>
<tr>
<td>- die psychologischen und sozialen Aspekte der Interaktion zwischen Mensch und Computer erläutern,</td>
</tr>
<tr>
<td>- in einem menschzentrierten Entwicklungsprozess interaktive Systeme mit begrenztem Funktionsumfang insbesondere hinsichtlich der Benutzungsschnittstelle realisieren, und</td>
</tr>
<tr>
<td>- Benutzungsschnittstellen mithilfe etablierter Hilfsmittel (z.B. AttrakDiff-Fragebogen) und Standards (ISO 9241-Reihe) hinsichtlich Gebrauchstauglichkeit und Benutzererlebnis bewerten.</td>
</tr>
<tr>
<td><strong>Lehrform</strong></td>
</tr>
<tr>
<td>☑ Vorlesung</td>
</tr>
<tr>
<td>☑ Übung</td>
</tr>
<tr>
<td>☐ Seminar/Seminaristischer Unterricht</td>
</tr>
<tr>
<td>☐ Labor</td>
</tr>
<tr>
<td>☐ Projekt</td>
</tr>
<tr>
<td><strong>Empfohlene Voraussetzungen</strong></td>
</tr>
<tr>
<td>Keine</td>
</tr>
<tr>
<td><strong>Literatur</strong></td>
</tr>
<tr>
<td><strong>Studienleistung</strong></td>
</tr>
<tr>
<td>☑ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)</td>
</tr>
<tr>
<td>☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)</td>
</tr>
<tr>
<td>☐ Bestehen von Leistungsstandkontrollen</td>
</tr>
<tr>
<td><strong>Prüfungsform</strong></td>
</tr>
<tr>
<td>☑ Mündliche Prüfung (nur bei geringer Teilnehmerzahl)</td>
</tr>
<tr>
<td>☑ Klausur</td>
</tr>
<tr>
<td>☐ Prüfung am PC</td>
</tr>
<tr>
<td>☐ Hausarbeit (ggf. mit Präsentation)</td>
</tr>
<tr>
<td>☐ Projekt (ggf. mit Präsentation)</td>
</tr>
<tr>
<td><strong>Verwendbarkeit</strong></td>
</tr>
<tr>
<td>Informatik (auch dual)</td>
</tr>
<tr>
<td>☑ PF ☐ WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
</tr>
<tr>
<td>☑ PF ☐ WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
</tr>
<tr>
<td>☑ PF ☐ WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
</tr>
<tr>
<td>☑ PF ☐ WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
</tr>
<tr>
<td>☑ PF ☐ WPF</td>
</tr>
<tr>
<td><strong>Angebot</strong></td>
</tr>
<tr>
<td>☑ Sommersemester ☐ Wintersemester ☐ Unregelmäßig</td>
</tr>
<tr>
<td><strong>Arbeitsaufwand</strong></td>
</tr>
<tr>
<td>ECTS-Punkte</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td><strong>Lehrende[r]</strong></td>
</tr>
<tr>
<td>Prof. Dr. T. Mentler</td>
</tr>
<tr>
<td><strong>Modulverantwortliche[r]</strong></td>
</tr>
<tr>
<td>Prof. Dr. T. Mentler</td>
</tr>
<tr>
<td><strong>Änderungsdatum</strong></td>
</tr>
<tr>
<td>23.10.2023</td>
</tr>
</tbody>
</table>
Grundlagen der Web-Technologien

Inhalte
Das Modul vermittelt wichtige Grundkenntnisse für die Durchführung von Praxisprojekten im Bereich WWW. Es werden Techniken besprochen, die für die weitergehende Vorlesungen der Bachelor- und Master-Studienfächer in Informatik von Bedeutung sind:
- Vorgehensmodell
- Barrierefreiheit
- HTML
- CSS
- JavaScript
- PHP
- HTTP
- URI

Lernergebnisse

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Keine

Literatur
- Paul Fuchs: HTML5 und CSS3 für Einsteiger, BMU Verlag, 2019
- Paul Fuchs: JavaScript: Programmieren für Einsteiger, BMU Verlag, 2019
- Michael Bonacina: PHP und MySQL, BMU Verlag, 2. Auflage, 2018
- Jens Jacobsen: Website-Konzeption: Erfolgreiche Websites planen, umsetzen und betreiben, dpunkt.verlag, 8. aktualisierte Auflage, 2017

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik PF WPF
- Informatik (dual) PF WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) PF WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

Angebot
- Sommersemester PF WPF
- Wintersemester PF WPF
- Unregelmäßig

Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

Lehrende(r)
- Prof. Dr. G. Schneider

Modulverantwortliche(r)
- Prof. Dr. G. Schneider

Änderungsdatum
16.01.2024
## Grundlagen der Web-Technologien (Transfer)

### Inhalte
Das Modul vermittelt wichtige Grundkenntnisse für die Durchführung von Praxisprojekten im Bereich WWW. Es werden Techniken besprochen, die für die weitergehende Vorlesungen der Bachelor- und Master-Studiengänge in Informatik von Bedeutung sind:
- Vorgehensmodell
- Barrierefreiheit
- HTML
- CSS
- JavaScript
- PHP
- HTTP
- URI

Transfer:
- Lernorte sind sowohl die Hochschule wie auch der jeweilige Praxispartner.
- Die Vorlesung und die zugehörige Übung finden an der Hochschule statt.
- Die Studienleistung wird im Rahmen der Übungen erbracht.
- Die Prüfungsleistung wird beim Praxispartner erbracht. Der Praxispartner definiert gemeinsam mit dem Modulverantwortlichen ein Projekt, welches im Laufe des Semesters zusammen mit und beim Praxispartner bearbeitet wird.
- Die Prüfung findet an der Hochschule statt.
- Die Prüfung beinhaltet die Projektvorstellung als Vortrag mit anschließendem Reflexionsgespräch inklusive einer projektbezogenen Ausarbeitung.

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminarrischtlicher Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur
- Paul Fuchs: HTML5 und CSS3 für Einsteiger, BMU Verlag, 2019
- Paul Fuchs: JavaScript: Programmieren für Einsteiger, BMU Verlag, 2019
- Michael Bonacina: PHP und MySQL, BMU Verlag, 2. Auflage, 2018
- Jens Jacobsen: Website-Konzeption: Erfolgreiche Websites planen, umsetzen und betreiben, dpunkt.verlag, 8. aktualisierte Auflage, 2017

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit

<table>
<thead>
<tr>
<th>Fachbereich</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik (dual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medizininformatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
<table>
<thead>
<tr>
<th>Lehrende[r]</th>
<th>Prof. Dr. G. Schneider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. G. Schneider</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>16.01.2024</td>
</tr>
</tbody>
</table>
Grundlagen des Anforderungsmanagements

Inhalte

Aufgabe des Anforderungsmanagements (engl. Requirements Engineering) ist es, aus oft vagen und teilweise widersprüchlichen Ideen der Stakeholder eine möglichst vollständige, korrekte und redundanzfrei, nachverfolgbare und atomare Systemspezifikation zu erzeugen, um den aufgeführten Problemen frühzeitig entgegenwirken zu können.

Lernergebnisse
Die Studierenden haben grundlegende Kenntnisse im Bereich der Anforderungsermittlung und Anforderungsdokumentation für Software-intensive Systeme erlangt. Sie überblicken ein Rahmenwerk für das Requirement Engineering und -Management, beherrschen wesentliche Aktivitäten im Requirements Engineering, wie z.B.
- Gewinnung von Anforderungen,
- Dokumentation von Anforderungen,
- Konfliktmanagement von Anforderungen,
- kennen Anforderungsartenfakte des Requirements Engineering,
- können konkrete Techniken des Requirements Engineering (z.B. Interviews zur Gewinnung von Anforderungen, Win-Win-Strategie zur Konfliktauflösung) anwenden,
- können textuelle und modellbasierte Spezifikationen erstellen,
- können das theoretisch erarbeitete Wissen an marktüblichen RE-Tools anwenden.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Keine

Literatur

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual) ☐ PF ☒ WPF
Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) ☐ PF ☒ WPF
Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) ☐ PF ☒ WPF
Künstliche Intelligenz und Data Science ☐ PF ☒ WPF
Medizininformatik ☐ PF ☒ WPF

Angebot
☐ Sommersemester ☒ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende[r]
Prof. Dr. G. Rock

Modulverantwortliche[r]
Prof. Dr. G. Rock

Änderungsdatum
03.02.2023
## IT-Sicherheit

### Inhalte
- Einführung: grundlegende Begriffe und Zusammenhänge
- Einführung in die Kryptologie und Steganographie
- Sicherheitsprotokolle auf verschiedenen Kommunikationsschichten wie z.B. IPSec, SSL, GMS
- Public Key Infrastrukturen: X.509 Zertifikate, Zertifizierungsstellen, Signaturen
- Netzwerksicherheit: Firewalls und Intrusion Detection Systeme
- Sicherheit vom Web - Applikationen
- Rechtliche Aspekte der IT-Sicherheit und Datenschutz
- Maßnahmen zur Erhöhung der Verfügbarkeit
- Authentisierung und Autorisierung in Computersystemen

### Lernergebnisse
Die Studierenden
- überblicken wesentliche Sicherheitskomponenten und -maßnahmen,
- können gesetzte Sicherheitsziele durch eine geeignete Auswahl von Sicherheitskomponenten und -maßnahmen erreichen,
- kennen die Grundwerte der IT-Sicherheit und können diese bei IT-Sicherheitsfragen anwenden,
- beherrschen die grundlegenden kryptologischen Verfahren wie z.B. die Vigenère-Chiffre, die Konstruktionsprinzipien von Hashfunktionen, ausgewählte Betriebsmodi von Blockchiffren und die RSA-Verschlüsselung und – Signatur und können diese in Aufgaben mit kleinen Zahlen per Hand berechnen,
- kennen wichtige Sicherheitsprotokolle, können diese analysieren und ausgewählte Protokolle anhand von Zahlenbeispielen berechnen,
- überblicken den Aufbau und die Verwendung von vertrauensbildenden Maßnahmen z.B. über Zertifikate und PKIs und verstehen, wie sie diese in existierenden Systemen wie PGP anwenden können,
- können Firewalls und Intrusion Detection Systeme bedarfsgerecht konfigurieren und deren Regelwerk analysieren,
- können die Namen und wichtigsten Teile von Gesetzen und Standards zur IT-Sicherheit und zum Datenschutz benennen und auf Szenarien anwenden.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Rechnernetze“ und „Mathematische Grundlagen“

### Literatur
- Claudia Eckert, IT-Sicherheit: Konzepte, Verfahren, Protokolle, Oldenbourg
- Norbert Pohlmann: Cyber-Sicherheit, Springer
- Mark Stamp, Information Security: Principles and Practice, John Wiley & Sons

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]
Prof. Dr. K. Knorr
<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Prof. Dr. K. Knorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungsdatum</td>
<td>22.11.2022</td>
</tr>
</tbody>
</table>
### Inhalte

- IT-Sicherheitsbetrachtung mobiler Systeme und Unterscheidung zu kabelgebundenen Systemen
- Kryptographische Grundlagen
  - Symmetrische und asymmetrische Verfahren
  - Hash-Verfahren
  - Pseudozufallszahlen
  - kryptographische Protokolle
- Standards und Richtlinien für die IT-Sicherheit mobiler Systeme
- Sicherheitsbetrachtungen mobiler Personal Area Networks wie z.B. Bluetooth
- WLAN [IEEE 802.11]
  - Sicherheitsarchitektur und Schwachstellen wie z.B. WEP und IEEE 802.11i
- Mobile Verkehrsnetze [WAN]
  - GSM/UMTS/LTE: Sicherheitsarchitektur und Schwachstellen
- Sicherheit mobiler Endgeräte am Beispiel des Android Betriebssystems
  - Android-Sicherheitsmodell
  - Sicherheitsbetrachtungen für Android-Applikationen
  - Android-Sicherheitsprobleme
- Standards und Richtlinien für die IT-Sicherheit mobiler Systeme
- Sicherheitsbetrachtungen mobiler Personal Area Networks wie z.B. Bluetooth
- WLAN (IEEE 802.11)
- Sicherheitsarchitektur und Schwachstellen wie z.B. WEP und IEEE 802.11i
- Mobile Verkehrsnetze (WAN)
- GSM/UMTS/LTE: Sicherheitsarchitektur und Schwachstellen
- Sicherheit mobiler Endgeräte am Beispiel des Android Betriebssystems
  - Android-Sicherheitsmodell
  - Sicherheitsbetrachtungen für Android-Applikationen
  - Android-Sicherheitsprobleme
- IT-Sicherheitsanalysen von Android-Applikationen durchführen und Datenschutzaspekte bei der Verwendung von Android verstehen und beurteilen.

### Lernergebnisse

Die Studierenden können
- die IT-Sicherheits-Unterschiede zwischen kabellosen und kabelgebundenen Netzen sowie mobilen und stationären Systemen verstehen und erklären,
- moderne kryptographische Verfahren wie elliptische Kurven, AES, CCM, GCM, ChaCha20 und moderne asymmetrische Verfahren zum Schutz mobiler Systeme kennen, deren Funktionsweise verstehen und Beispielaufgaben berechnen,
- die zugrunde liegenden Sicherheits-Architekturen, Authentisierungsverfahren und kryptographischen Verfahren ausgewählter mobiler System wie WLAN oder Mobilfunk verstehen,
- Angriffe auf ausgewählte mobile Systeme verstehen und mit Hilfe geeigneter Tools durchführen,
- die Android-Sicherheitsarchitektur und ausgewählte Android-Sicherheitsmaßnahmen überblicken und deren Vor- und Nachteile bewerten,
- IT-Sicherheitsanalysen von Android-Applikationen durchführen und Datenschutzaspekte bei der Verwendung von Android verstehen und beurteilen.

### Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse der Module „Rechnernetze“ und „IT-Sicherheit“

### Literatur

- Wolfgang Ertl: Angewandte Kryptographie, Hanser-Verlag
- Douglas Stinson: Cryptography: Theory and Practice, Taylor & Francis
- Wolfgang Osterhage: Sicherheit in der drahtlosen Kommunikation, Springer

### Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform

- Mündliche Prüfung [nur bei geringer Teilnehmerzahl]
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit

- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

### Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]

Prof. Dr. K. Knorr
<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Prof. Dr. K. Knorr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungsdatum</td>
<td>22.11.2022</td>
</tr>
</tbody>
</table>
IT-Sicherheitspraktikum

Inhalte
Die in den Vorlesungen Rechnernetze und IT-Sicherheit theoretisch vermittelten Grundlagen werden im Praktikum IT-Sicherheit praktisch angewandt. Das Praktikum umfasst eine Vielzahl von Einzelaufgaben, die selbständig von den Studierenden allein oder in Kleingruppen zu bearbeiten sind:

- System- und Netzaufbau und -betrieb:
  - Installation und Konfiguration von Betriebssystemen
  - Installation und Konfiguration von Netzkomponenten
  - Netzanbindung und Netzkonfiguration der Systeme
  - Installation und Konfiguration von Standard-Servern wie z.B. DNS-, DHCP-, E-Mail-, Web- und Datenbank-Server

- Integration und Betrieb von Sicherheitsmaßnahmen:
  - Sichere Konfiguration von Routern und Firewalls
  - Erstellung einer CA (Certification Authority) und Erzeugung von Zertifikaten
  - Konfiguration von Sicherheitsprotokollen wie HTTPS/TLS, SSH und IPSec
  - Absichern von Web-Applikationen
  - Nutzung von Zertifikaten für verschlüsselte und digital signierte E-Mails

Abschließend wählen die Studierenden ein Thema für ein Netzwerkprojekt, das sie eigenständig durchführen und präsentieren.

Lernergebnisse
Die Studierenden
- kennen wichtige Programme wie vi, apt-get, ssh, openssl zur Konfiguration der verwendeten Arbeitsumgebung und können diese anwenden,
- können selbständig Systeme, Netze und Sicherheitsmaßnahmen installieren, konfigurieren und betreiben,
- kennen geeignete Sicherheitsmaßnahmen zum Schutz von Systemen und Netzwerken und können diese bewerten, auswählen und auf gegebene Szenarien zur Absicherung anwenden,
- beherrschen „Hacking“. Sie kennen dazu die Vorgehensweisen und ausgewählte Tools, können diese verstehen und das Erlernte an Beispielszenarien anwenden,
- können in Gruppenübungen gemeinsam komplexe Systeme planen, realisieren und absichern,
- können selbstgewählte Themen bearbeiten und die Ergebnisse vermitteln.

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Systemadministration“, „Rechnernetze“ und „IT-Sicherheit“

Literatur
- Ubuntu-Dokumentation [https://help.ubuntu.com/]
- Literatur der Module „Rechnernetze“ und „IT-Sicherheit“

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual)
- Digitale Medien und Spiele [Schwerpunkt Medien]
- Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
<tr>
<td>Lehrende(r)</td>
<td>Prof. Dr. K. Knorr</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. K. Knorr</td>
<td></td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>13.01.2023</td>
<td></td>
</tr>
</tbody>
</table>
KI in der Anwendung

Inhalte
In der Veranstaltung erlernen die Studierenden die Entwicklung von Systemen der Künstlichen Intelligenz in interdisziplinären Teams für verschiedene Anwendungsbeispiele. Dies geschieht anhand von praxisnahen Übungsprojekten in den Anwendungsfeldern:
- Automatisiertes Fahren/Fahrsimulation
- Elektrophysiologie
- Mobile Robotik
- Radarbasierte Epilepsieerkennung
- Reinforcement Learning Contest
- Spiking Neural Networks

Lernergebnisse

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Keine

Literatur

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual) PF WPF
- Digitale Medien und Spiele (Schwerpunkt Medien) PF WPF
- Digitale Medien und Spiele (Schwerpunkt Spiele) PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

Lehrende[r]
Prof. Dr.-Ing. A. Diewald, Prof. Dr. E. G. Haffner, Prof. Dr.-Ing. K. P. Koch, Prof. Dr.-Ing. M. Scherer, Prof. Dr.-Ing. J. Schneider, Prof. Dr.-Ing. E. Seidenberg

Modulverantwortliche[r]
Prof. Dr.-Ing. J. Schneider

Änderungsdatum
09.01.2024
## Kognitive Sichtsysteme

### Inhalte

- Künstliche Intelligenz und Computer Vision:
  - Einführung in das Themengebiet
  - Sensation und Perzeption (eine Kognitionpsychologische Betrachtung)
  - Architekturen für Kognitive Systeme (Theorie und Praxis)
  - Sensortechnik (Kameramodell und Kalibrierung inkl. Hand-Auge)
  - Korrespondenzprobleme I (Invariante Merkmale)
  - Korrespondenzprobleme II (Epi-polar-Geometrie und Rekonstruktion)
  - Korrespondenzprobleme III (Optischer Fluss und Bewegungsschätzung)
  - Korrespondenzprobleme IV (Methoden der Registrierung)
  - Korrespondenzprobleme V (Bayessche Optimalfiltrierung und Tracking)
  - Segmentierung I (Grundlagen Tiefes Lernen (TL))
  - Segmentierung II (Architekturmuster TL)
  - Segmentierung III (Konzepte und Methoden)
  - Wissensrepräsentation und Szeneverstehen

Die Unterlagen sind in englischer Sprache verfasst, die Unterrichtssprache ist Deutsch.

### Lernergebnisse


### Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse der Module „Lineare Algebra“ und „Analysis und Numerik“

### Literatur


### Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform

- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
<th>Informatik (auch dual)</th>
<th>Informatik – Digitale Medien und Spiele (Schwerpunkt Medien)</th>
<th>Informatik – Digitale Medien und Spiele (Schwerpunkt Spiele)</th>
<th>Künstliche Intelligenz und Data Science</th>
<th>Medizininformatik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PF</td>
<td>WPF</td>
<td>PF</td>
<td>WPF</td>
<td>PF</td>
</tr>
</tbody>
</table>

### Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig
<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
<tr>
<td>Lehrende[r]</td>
<td>Prof. Dr. J. Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. J. Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>17.05.2024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Kognitive Systeme

### Inhalte
- Architekturmuster, Systeme, Anwendungen
- Sensortechnik
- Invariante Merkmale und Kalibrierung
- Epipolar-Geometrie und Rekonstruktion
- Registrierung
- Visuelle Odometrie
- Optimalfilterung
- Segmentierung
- Planung
- Entscheidungsfindung
- Repräsentation und Kinematik
- Regelung

Die Unterlagen sind in englischer Sprache verfasst, die Unterrichtssprache ist Deutsch.

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Lineare Algebra“ und „Analysis und Numerik“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende
- Prof. Dr. J. Graf
<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Prof. Dr. J. Graf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungsdatum</td>
<td>17.05.2024</td>
</tr>
</tbody>
</table>
Kryptologisches Programmierpraktikum

### Inhalte
- Erläuterung der wichtigsten kryptographischen Grundlagen:
  - Symmetrische Verfahren: klassische Verfahren, AES, Blockmodi wie CBC und GCM, Stromchiffren
  - Asymmetrische Verfahren: RSA, Rabin, Elgamal, Diffie Hellman
  - Hash-Verfahren
  - Pseudozufallszahlen
  - Zertifikate
  - Elliptische Kurven
- Implementierung kryptographischer Verfahren in Java und anderen Programmiersprachen
- Aufbau und Anwendung bestehender Krypto-Bibliotheken wie JCA, JCE und Bouncy Castle
- Test driven Software Development mit JUnit Tests
- Exception Handling bei der Java Kryptologie
- Secure Software Engineering
- Code-Review guter und schlechter Krypto-Implementierungen
- Die grundlegenden Primitiven werden in kryptographischen Protokollen und Anwendungen wie z.B. PBKDF, Secret Sharing, Schlüsselaustauschverfahren, Gruppenverschlüsselung verwendet und implementiert.

### Lernergebnisse
Die Studierenden
- kennen die zugrunde liegenden kryptographischen Primitiven,
- kennen die wichtigsten Java-Klassen mit Bezug zur Kryptologie wie z.B. Cipher, ECCurve oder BigInteger inklusive der wichtigsten Konstruktoren, Attribute, Methoden und Exceptions,
- können ausgewählte kryptologische Verfahren wie z.B. das klassische Verfahren Playfair, das Rabin-Verfahren oder Secret Sharing nach Shamir für kleine Zahlen berechnen und diese sicher in Java implementieren,
- erkennen typische kryptologische Fehler und können diese vermeiden,
- können bestehende Krypto-Bibliotheken anwenden,
- können kryptologische Java-Applikationen inklusive der Definition geeigneter Exceptions und JUnit-Testfälle entwickeln,
- können zu einem gewählten kryptologischen Thema eigenständig in Teamarbeit einen lauffähigen Demonstrator inkl. geeigneter JUnit-Testfälle konzipieren und entwickeln.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
- Kompetenzen gemäß der Lernergebnisse der Module „Einführung in die Programmierung“ und „Objektorientierte Programmierung – Grundlagen“
- Erbrachte Studienleistung oder parallele Teilnahme am Modul „IT-Sicherheit“

### Literatur
- David Hook – Beginning Cryptography with Java. John Wiley & Sons
- David Hook and Jon Eaves – Java Cryptography: Tools and Techniques

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)  [PF](#) [WPF](#)
- Digitale Medien und Spiele (Schwerpunkt Medien)  [PF](#) [WPF](#)
- Digitale Medien und Spiele (Schwerpunkt Spiele)  [PF](#) [WPF](#)
- Künstliche Intelligenz und Data Science  [PF](#) [WPF](#)
- Medizininformatik  [PF](#) [WPF](#)

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig
<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
<tr>
<td>Lehrende[r]</td>
<td>Prof. Dr. K. Knorr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. K. Knorr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>04.03.2024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Inhalte
Die Veranstaltung thematisiert Algorithmen der Künstlichen Intelligenz (KI) speziell für die Spielentwicklung. KI-Algorithmen für Spiele unterscheiden sich in vielfältiger Weise von klassischen KI-Algorithmen aus der Robotik oder Mustererkennung.
- Besonderheiten der Künstlichen Intelligenz für Spiele
- Strategien aus der Spieltheorie, reine und gemischte Strategien
- Action Prediction, n-Gramme
- Decision Trees
- State Machines
- Behaviour Trees
- Goal-Oriented Behaviour
- RETE
- Online- und Offline-Lernen

### Lernergebnisse
Die Studierenden verstehen die Anforderungen an KI-Algorithmen für die Spielentwicklung sowie die Theorie und Praxis von Künstlicher Intelligenz und können individuelle KI-Strategien umsetzen und weiterentwickeln.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Computergrafik“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus- / Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

### Lehrende[r]
- Prof. Dr. C. Rezk-Salama

### Modulverantwortliche[r]
- Prof. Dr. C. Rezk-Salama

### Änderungsdatum
14.03.2024
## Labor Robotik

### Inhalte
- Grundlagen autonomer mobiler Roboter (AMR) und Entwicklung einfacher „Verhalten“:
  - Autonome mobile Roboter (AMR)
  - Eigenschaften, HW- und SW-Grundelemente, Einsatzmöglichkeiten
  - Verhaltensparadigmen für AMR
  - hierarchisch, reaktiv, hybrid
  - Locomotion
    - Antriebsarten, Kinematik, Pose-Berechnung
  - Sensoren
    - Sensormodalitäten, Sensortypen (physikalisch, logisch), Sensortechnologien und Beispiele (Sonar, Video, Laser, GPS)
  - Repräsentation
    - Darstellung der Umwelt, geometrische, Raster- und topologische Darstellungen
  - Planung, Navigation und Lokalisation
    - Partitionierung des Konfigurationsraums, Voronoi-Diagramm, Potenzialfeld, Markov-Lokalisation, Kalman Filter
  - Drogen: Definition und rechtliche Grundlagen

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung – Grundlagen“, „Datentypen“ und „Mathematische Grundlagen“ und „C/C++-Programmierung“

### Literatur
- OpenCV: Documentation (https://docs.opencv.org/)

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) [PF WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

### Lehrende(r)
- Prof. Dr. J. Graf

### Modulverantwortliche(r)
- Prof. Dr. J. Graf
| Änderungsdatum | 02.02.2024 |
Lineare Algebra

Inhalte
- Vektoren, Matrizen, Skalarprodukt
- Lineare Hülle, Unterraum
- Hyperebenen
- Lineare Abbildungen [Kern, Bild, Isomorphismus]
- Lineare Gleichungssysteme [Gauß-Verfahren, Gauß-Jordan-Verfahren]
- Lineare Abhängigkeit, Basis, Rang, Dimensionsformel
- Zerlegung von Vektorräumen, orthogonale Projektion, Kleinste-Quadrate-Problem
- Determinante
- Eigenwerte, Diagonalisierbarkeit, Spektalsatz

Lernergebnisse
Die Studierenden können
- die wesentlichen Inhalte der Veranstaltung benennen,
- grundlegende Rechenoperation mit Vektoren, Matrizen und Determinanten durchführen,
- grundlegende Methoden der Veranstaltung, wie Gauß-Verfahren, Orthogonalisierung etc. anwenden,
- Beweise der Veranstaltung selbstständig analysieren,
- Definition und Sätze der Veranstaltung in einfachen Problemstellungen (wie in den Übungen) selbstständig anwenden,
- die Grenzen der Anwendbarkeit der mathematischen Begriffe und Werkzeuge der Veranstaltung analysieren, sowie
- neue Begriffe und Methoden der linearen Algebra selbstständig verstehen.

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Keine

Literatur

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
5
60 Stunden
90 Stunden

Lehrende[r]
- Prof. Dr. H.-P. Beise

Modulverantwortliche[r]
- Prof. Dr. H.-P. Beise

Änderungsdatum
11.10.2023
### Maschinelles Lernen und Neuronale Netze

**Inhalte**


**Maschinelles Lernen**

- Einführung: Maschinelles Lernen
- Dimensionsreduktion und Datenvisualisierung
- Unüberwachtes Lernen
  - K-Means Clustering
  - Hierarchische Clusteranalyse
  - Self-Organizing Maps – SOM
- Überwachtes Lernen
  - Regression
  - Lineare Diskriminanlyse
  - Entscheidungsbäume
  - Bayes-Klassifikator
  - K-Nearest Neighbour
- Evaluierung von Modellen

**Neuronale Netze**

- Grundlagen
- Funktionsweise einfacher Neuronen
- Perzeptron-Algorithmus
- Mehrlagige Perzeptronen
- Training Neuronaler Netze:
  - Backpropagation-Algorithmus
  - [Stochastisches] Gradientenabstiegsverfahren
- Faltungende Neuronale Netze [CNN]
- Rekurrente Neuronale Netze
- Autoencoder
- Überblick zu weiteren Netzarchitekturen: LSTM, Seq2Seq, Transformer

**Lernergebnisse**

Die Studierenden

- haben ein fundiertes Verständnis der Funktionsprinzipien und Aufgaben maschinelles Lernverfahren und neuronaler Netze,
- kennen Anforderungen und Vorgehenskonzept maschinelles Lernverfahren,
- können Methoden praktisch entwickeln und an aktuellen Fragestellungen anwenden und
- erlangen die Fähigkeit, aktuelle Entwicklungen zu verstehen, kritisch zu reflektieren und eigenständig umzusetzen.

**Lehrform**

- Vorlesung
- Übung
- Seminar/Seminariunterricht
- Labor
- Projekt

**Empfohlene Voraussetzungen**

Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“, „Lineare Algebra“ und „Analysis und Numerik“

**Literatur**

- Jörg Frochte: Maschinelles Lernen - Grundlagen und Algorithmen in Python. Hanser Verlag, 2020

**Studienleistung**

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

**Prüfungsform**

- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

**Verwendbarkeit**

<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Angebot</td>
<td>Sommersemester</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>ECTS-Punkte</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>60 Stunden</td>
</tr>
<tr>
<td>Lehrende[r]</td>
<td>Prof. Dr. H.-P. Beise, Prof. Dr. J. Lohscheller</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. J. Lohscheller</td>
<td></td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>30.01.2024</td>
<td></td>
</tr>
</tbody>
</table>
# Mathematische Grundlagen

## Inhalte
- Mengen und Abbildungen
- Aussagenlogik
- Algebraische Strukturen (Gruppen, Ringe, Körper)
- Induktion
- Komplexe Zahlen (Fundamentalsatz der Algebra)
- Folgen, Rekursion, Grenzwerte
- Exponentialfunktion in der komplexen Ebene, trigonometrische Funktionen

Für Teilnehmer mit unzureichenden Vorkenntnissen zusätzlich 2 SWS Schulmathematik.

## Lernergebnisse
Die Studierenden können
- die wesentlichen Inhalte der Veranstaltung benennen,
- grundlegende Methoden der Veranstaltung, wie Wahrheitstabellen, Mengenoperationen, Induktion etc. anwenden,
- wichtige Definition und Sätze der Veranstaltung wiedergeben,
- einfache mathematische Beweise selbstständig nachvollziehen,
- Definition und Sätze der Veranstaltung in einfachen Problemstellungen (wie in den Übungen) selbstständig anwenden,
- die Grenzen der Anwendbarkeit der mathematischen Begriffe und Werkzeuge der Veranstaltung analysieren.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Beherrschung des Schulstoffes der Mathematik

## Literatur

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
- Informatik (auch dual) PF WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] PF WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

## Angebot
- Sommersemester PF WPF
- Wintersemester PF WPF
- Unregelmäßig PF WPF

## Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60/90 Stunden (s.o.)
- Selbststudium: 90/120 Stunden (s.o.)

## Lehrende(r)
- Prof. Dr. H.-P. Beise

## Modulverantwortliche(r)
- Prof. Dr. H.-P. Beise

## Änderungsdatum
25.01.2023
### Medienprojekt

#### Inhalte

#### Lernergebnisse
Die Studierenden haben durch die erfolgreiche Bearbeitung gezeigt, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein übersichtliches praxisorientiertes Problem in einem interdisziplinären Team zu bearbeiten. Sie sind in der Lage, die bisher im Studium erworbenen Kenntnisse, Fähigkeiten und Methoden auf eng begrenzte Fragestellungen anzuwenden. Sie leiten auf dieser Basis Lösungsansätze ab und formulieren eine Lösung für das Problem.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Abhängig von der Aufgabenstellung, wird vom Betreuer festgelegt

#### Literatur
- 

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual) PF WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] PF WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
10 15 Stunden 285 Stunden

#### Lehrende[r]
- Dozenten des Fachbereichs Informatik

#### Modulverantwortliche[r]
- Fachrichtungsleiter Informatik

#### Änderungsdatum
22.11.2022
Medizinische Bildgebung

Inhalte
Es werden die physikalischen Grundlagen, die Grundlagen der Bildgebung und die Hauptanwendungsgebiete der
- Röntgenbildgebung (Röntgenfilm, Verstärkerfolien, digitales Röntgen),
- der Computertomographie (CT),
- der Magnetresonanztomographie (MR),
- der nuklearen Bildgebung (SPECT, PET)
- und des Ultraschalls (US)
vermittelt. Für die einzelnen Bildungsverfahren wird der grundlegende Aufbau, das physikalische Messprinzip und das medizinische Anwendungsszenario dargestellt.

Lernergebnisse

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Signal- und Bildverarbeitung“

Literatur
- Dössel, Olaf: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung. Springer.
- Oppelt, Arnulf: Imaging Systems for Medical Diagnostics: Fundamentals, technical solutions and applications for systems applying ionization radiation, nuclear magnetic resonance and ultrasound. Publicis.

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual) ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] ☐ PF ☐ WPF
Künstliche Intelligenz und Data Science ☐ PF ☐ WPF
Medizininformatik ☐ PF ☐ WPF

Angebot
☒ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende(r)
Prof. Dr. J. Lohscheller

Modulverantwortliche(r)
Prof. Dr. J. Lohscheller

Änderungsdatum
14.03.2024
# Medizinische Computergrafik

**Inhalte**

Die Vorlesung thematisiert die Grundlagen zur Entwicklung grafischer Anwendungen im Bereich Medizin und umfasst die folgenden Themen:

- Grundlagen der Computergrafik
- Grafik-Programmierung
- Beleuchtungsberechnung
- Iso-Flächen
- Direkte Volumenvisualisierung
- GPU Raycasting und Texture Slicing
- Klassifikationsverfahren
- Multidimensionale Klassifikation
- Volumetrische Beleuchtung

**Lernergebnisse**

Die Studierenden lernen interaktive, grafische Anwendungen im Bereich medizinischer Visualisierung zu entwickeln. Sie erwerben die Fähigkeit, den aktuellen technologischen Stand zu reflektieren und zielgerichtet eigene Problemstellungen im Bereich Visualisierung zu bearbeiten.

**Lehrform**

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

**Empfohlene Voraussetzungen**

Keine

**Literatur**


**Studienleistung**

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

**Prüfungsform**

- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

**Verwendbarkeit**

- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

**Angebot**

- Sommersemester
- Wintersemester
- Unregelmäßig

**Arbeitsaufwand**

- ECTS-Punkte
- Kontaktzeit
- Selbststudium
- 5
- 60 Stunden
- 90 Stunden

**Lehrende[r]**

- Prof. Dr. C. Rezk-Salama

**Modulverantwortliche[r]**

- Prof. Dr. C. Rezk-Salama

**Änderungsdatum**

05.06.2023
### Medizinische Statistik

#### Inhalte
- Bedeutung der Epidemiologie für das Gesundheitswesen/Gesundheitspolitik
- Epidemiologische Maße: Prävalenz, Inzidenz, Relatives Risiko, Odds Ratio, Fehlerquellen und -typen, Deskriptive, analytische und experimentelle Epidemiologie, Studientypen
- Grundbegriffe der Wahrscheinlichkeitsrechnung, Maßzahlen, Zufallsgrößen, Verteilungen
- Deskriptive Statistik: Methoden, grafische Darstellungen, Kenngrößen;
- Analytische Statistik: Punktschätzungen, Vertrauensintervalle, Hypothesenprüfung, Klassifikation der statistischen Signifikanztests, ausgewählte ein- und zweistichproben Testverfahren, zwei- und mehrfache Varianzanalyse, Korrelations- und Regressionsanalyse,
- Grundlagen der multivariaten Datenanalyse
- Standards klinischer und epidemiologischer Forschung, Klinische und epidemiologische Studientypen;
- Erhebungs- und Analyseverfahren
- Qualitätsanforderungen an klinischen Studien
- Literatur und Auswertung der klinischen Studie. Grundlagen der Versuchsplanung
- Interpretation empirischer Befunde, Fehleranalyse und Fehlerabschätzung

#### Lernergebnisse
Die Studierenden sind mit den gängigsten statistischen Auswertungsverfahren vertraut, die im Bereich biomedizinischer, klinischer oder epidemiologischer Fragestellungen eingesetzt werden. Sie sind darin trainiert, statistische Auswertungen mit entsprechender Statistiksoftware durchzuführen und eigenständig statistische Methoden zur Auswertung von Datensätzen auszuwählen und anzuwenden. Sie sind in der Lage, vorliegende statistische Untersuchungen kritisch auf die Qualität ihrer statistischen Bearbeitung zu analysieren. Sie können weiterhin die Bedeutung und Relevanz epidemiologischer Maßzahlen und Kenngrößen richtig einschätzen.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Lineare Algebra“

#### Literatur
- Günther Bourier: Beschreibende Statistik. Springer.

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
Informatik (auch dual)  PF  WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]  PF  WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]  PF  WPF
Künstliche Intelligenz und Data Science  PF  WPF
Medizininformatik  PF  WPF

#### Angebot
- Sommersemester  WPF
- Wintersemester  WPF
- Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit  5  60 Stunden
- Selbststudium  90 Stunden

#### Lehrende[r]
Prof. Dr. J. Lohscheller
<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Prof. Dr. J. Lohscheller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungsdatum</td>
<td>07.11.2023</td>
</tr>
</tbody>
</table>
## Natural Language Processing

### Inhalte
Die Verarbeitung natürlicher Sprache (Natural Language Processing) ist ein Teilbereich der Künstlichen Intelligenz, der sich mit der Untersuchung von Computermodellen der menschlichen Sprache befasst. Das Ziel dabei ist es, Maschinen in die Lage zu versetzen, die menschliche Sprache zu verstehen und zu nutzen. Die Vorlesung gibt eine Einführung in die wichtigsten Ansätze der Verarbeitung natürlicher Sprache. Betrachtete Themen sind:

- Reguläre Ausdrücke, Textnormalisierung, Tokenisierung, Part-of-Speech Tagging
- Edit Distance
- N-gram-Sprachmodelle
- Textklassifikation
- Vektor-Semantik und Word Embeddings
- Neural Language Models (optional)

### Lernergebnisse
Die Studierenden können

- für natürlichsprachliche Texte in Python Textnormalisierung, Tokenisierung sowie Part-of-Speech Tagging vornehmen,
- N-gram-Sprachmodelle für natürlichsprachliche Texte in Python erstellen und
- Word Embeddings verwenden.

### Lehrform

- **Vorlesung**
- **Übung**
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Theoretische Informatik“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit

<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]
Prof. Dr. C. Schon

### Modulverantwortliche[r]
Prof. Dr. C. Schon

### Änderungsdatum
17.10.2023
## Objektorientierte Programmierung - Grundlagen

### Inhalte
- Einführung in die objektorientierte Programmierung
  - Grundlegende Konzepte der objektorientierten Programmierung: Klasse, Objekt, Beziehung, Generalisierung, Spezialisierung, Vererbung, Polymorphie
  - Klassenbeziehungen: Assoziation, Aggregation, Komposition
  - Modellierung in UML
- Programmieren in Java
  - Das Java-System
  - Grundelemente von Java
  - Operatoren und Ausdrücke
  - Anweisungen
  - Einführung in die objektorientierte Programmierung
  - Grundkonzepte der objektorientierten Programmierung
  - Klassen und Objekte
  - Module
  - Vererbung
  - Zeichenketten und Felder
  - Ausnahmebehandlung
  - Generische Datentypen

### Lernergebnisse
Die Studierenden
- überblicken unterschiedliche Paradigmen von Programmiersprachen,
- haben ein grundlegendes Verständnis der Konzepte objektorientierter Programmierung erlangt,
- können alle wichtigen Elemente der Programmiersprache Java anwenden,
- können einfache Java-Programme analysieren und erstellen,
- beherrschen die Grundkonzepte der objektorientierten Programmierung und können diese mit der Standardnotation UML beschreiben,
- können die Prinzipien der objektorientierten Programmierung in Java umsetzen.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Einführung in die Programmierung“

### Literatur
Reinhard Schiedermeier: Programmieren mit Java, Pearson Studium, 2. aktualisierte Auflage, 2010

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 80 Stunden
- Selbststudium: 90 Stunden

### Lehrende(r)
- Prof. Dr. G. Schneider

### Änderungsdatum
29.02.2024
Objektorientierte Programmierung – Vertiefung

Inhalte
- Einleitung
- Rückblick auf „Objektorientierte Programmierung – Grundlagen“
- Erweiterte Ausnahmebehandlung
- Generics
- Schnittstellen, Lambda-Ausdrücke und Methodenreferenzen
- Parallelität
- Konzepte für größere Software-Projekte

Lernergebnisse


Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Objektorientierte Programmierung – Grundlagen“

Literatur

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual) PF WPF
- Informatik – Digitale Medien und Spiele (Schwerpunkt Medien) PF WPF
- Informatik – Digitale Medien und Spiele (Schwerpunkt Spiele) PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

Lehrende[r]
- Prof. Dr. G. Schneider

Modulverantwortliche[r]
- Prof. Dr. G. Schneider

Änderungsdatum
- 21.05.2024
Physiologielabor

**Inhalte**

**Lernergebnisse**
Die erfolgreiche Entwicklung und Konzeption neuer Diagnose- und Therapieverfahren erfordert grundlegende Kenntnisse über Ätiologie und Symptomatik von Krankheitsbildern. Die Studierenden besitzen im Anschluss an die Lehrveranstaltung die Kompetenz, verschiedene messtechnische Verfahren zur Analyse physiologischer Vorgänge beim Menschen eigenständig durchzuführen und die resultierenden Messung in einem klinischen Kontext zu interpretieren. Auch werden Sie in die Lage versetzt, neue innovative Verfahren zu bewerten, die gegenwärtig in der experimentellen Forschung Anwendung finden.

**Lehrform**
- [ ] Vorlesung
- [ ] Übung
- [ ] Seminar/Seminaristischer Unterricht
- [x] Labor
- [ ] Projekt

**Empfohlene Voraussetzungen**
Kompetenzen gemäß der Lernergebnisse der Module „Grundlagen der Medizin A/B“

**Literatur**
Huch, Renate, Jürgens, Klaus D.: Mensch Körper Krankheit. Urban & Fischer Verlag/Elsevier

**Studienleistung**
- [x] Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- [ ] Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- [ ] Bestehen von Leistungsstandkontrollen

**Prüfungsform**
- [x] Mündliche Prüfung
- [ ] Klausur
- [ ] Prüfung am PC
- [ ] Hausarbeit (ggf. mit Präsentation)
- [ ] Projekt (ggf. mit Präsentation)

**Verwendbarkeit**
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

**Angebot**
- [ ] Sommersemester
- [x] Wintersemester
- [ ] Unregelmäßig

**Arbeitsaufwand**
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

**Lehrende[r]**
- Prof. Dr. J. Lohscheller

**Modulverantwortliche[r]**
- Prof. Dr. J. Lohscheller

**Änderungsdatum**
27.03.2023
Programmierparadigmen

Inhalte
- Überblick über Programmierparadigmen
- Grundkonzepte der funktionalen und logischen Programmierung in Racket, LISP und/oder Haskell
- Funktionale Abstraktion
- Funktionen höherer Ordnung
- Rekursion und algebraische Datenstrukturen
- Symbolische Repräsentation und Verarbeitung
- Funktionale Konzepte in modernen Sprachen und Frameworks (Java 8 Lambdas und Streams, Big Data, Reactive Programming)

Lernergebnisse
- Studierende können nach erfolgreicher Teilnahme
  - Probleme funktional abstrahieren, beschreiben und lösen,
  - rekursive Algorithmen und Datenstrukturen entwerfen,
  - Funktionen höherer Ordnung erkennen und anwenden und
  - funktionale Konzepte in anderen Programmiersprachen und Frameworks, z. B. Java Streams, verstehen und effektiv nutzen.

Lehrform
- Vorlesung
- Übung
- Seminar/Seminarisierter Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen
Keine

Literatur

Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik (auch dual)  ECTS: 5  PF  WPF
- Informatik - Digitale Medien und Medien (Schwerpunkt Medien)  ECTS: 5  PF  WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)  ECTS: 5  PF  WPF
- Künstliche Intelligenz und Data Science  ECTS: 5  PF  WPF
- Medizininformatik  ECTS: 5  PF  WPF

Angebot
- Sommersemester  ECTS: 5
- Wintersemester  ECTS: 5
- Unregelmäßig

Arbeitsaufwand
- ECTS-Punkte
- Selbststudium
- Kontaktzeit
- 60 Stunden
- 90 Stunden

Lehrende[r]
- Prof. Dr. T. Mentler

Modulverantwortliche[r]
- Prof. Dr. T. Mentler

Änderungsdatum
- 26.01.2023
## Real-Time Rendering

### Inhalte

Die Veranstaltung thematisiert vertiefende Aspekte der Computergrafik. Der Schwerpunkt liegt dabei auf Hardware-Beschleunigung und Shading.

- Komplexe Materialmodelle, Bidirektionale Reflexionsverteilungsfunktion (BRDF)
- Graphics Hardware, Shader-Programmierung und Shading Languages
- Texturen, MIP-Mapping, Anisotrope Filterung, Prozedurale Texturen
- Forward Rendering und Deferred Shading
- Image-based Lighting und High Dynamic Range Imaging
- Non-Photorealistic Rendering, Cel-Shading (NPR)
- Image-Based Rendering
- Point-Based Rendering

### Lernergebnisse

Die Studierenden

- verstehen die Funktionsweise moderner Grafik-Hardware,
- verstehen die Theorie und Praxis physikalisch-basierter Bildsynthese,
- können Beleuchtungsverfahren entwickeln und umsetzen,
- können effiziente, hardware-nahe Shader-Programme entwickeln und analysieren,
- überblicken den aktuellen Stand der Forschung im Bereich Bildsynthese.

### Lehrform

- [ ] Vorlesung
- [ ] Übung
- [ ] Seminar/Seminartistischer Unterricht
- [ ] Labor
- [ ] Projekt

### Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Computergrafik“

### Literatur


### Studienleistung

- [ ] Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- [ ] Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- [ ] Bestehen von Leistungsstandkontrollen

### Prüfungsform

- [ ] Mündliche Prüfung
- [ ] Klausur
- [ ] Prüfung am PC
- [ ] Hausarbeit (ggf. mit Präsentation)
- [ ] Projekt (ggf. mit Präsentation)

### Verwendbarkeit

- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) [PF WPF]
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

### Angebot

- [ ] Sommersemester [ ] Wintersemester [ ] Unregelmäßig

### Arbeitsaufwand

- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

### Lehrende[r]

Prof. Dr. C. Rezk-Salama

### Modulverantwortliche[r]

Prof. Dr. C. Rezk-Salama

### Änderungsdatum

14.03.2024
## Rechnernetze

### Inhalte
- **Einführung:** Referenzmodelle, Geschichte des Internets
- **Bitübertragungsschicht:** physikalische Grundlagen, Frequenzen, Kabel, Kodierung
- **Sicherungsschicht:** Rahmenbildung, Fehlererkennung und -korrektur, Ethernet, WLAN, Switching, VLAN
- **Vermittlungsschicht:** Internet Protokoll, Routing-Protokolle, Überlastüberwachung, Dienstgüte/Quality of Service
- **Transportschicht:** TCP inkl. Verbindungsaufbau und -abbau, Sliding Window, Überlastüberwachung und UDP
- **Anwendungsschicht:**
  - Klassische Anwendungen: Telnet, FTP, DNS
  - Mail-Protokolle
  - HTTP und Web-Technologie

### Lernergebnisse
Die Studierenden können
- die Funktionsweise von Rechnernetzen mit besonderem Schwerpunkt auf dem Internet erklären,
- die Funktionsweise von Protokollen wie Ethernet, IP, TCP, DNS, HTTP und deren Zusammenspiel überblicken und erklären,
- Aufgaben für ausgewählte Netzwerktathemen wie z.B. Fehlererkennung- und Korrektur, Adressierungs-, Wegewahl, Flusskontrolle und Namensauflösung lösen bzw. berechnen,
- Netzwerk-Tools wie z.B. Wireshark benennen und anwenden und sinnvoll zur Analyse einsetzen, um bspw. das Verhalten eines Netzwerks zu analysieren und um Fehler zu beheben.

### Lehrform
- ☐ Vorlesung
- ☐ Übung
- ☐ Seminar/Seminaristischer Unterricht
- ☐ Labor
- ☐ Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur
- J. Kurose, K. Ross: Computernetzwerke: Der Top-Down-Ansatz, Pearson-Studium
- Ch. Meinel: Internetworking
- T.L. Peterson, B.S. Davie: Computernetze: Eine systemorientierte Einführung, Morgan Kaufmann
- A.S. Tanenbaum: Computernetzwerke, Pearson-Studium

### Studienleistung
- ☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- ☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- ☐ Bestehen von Leistungsstandkontrollen

### Prüfungsform
- ☐ Mündliche Prüfung
- ☐ Klausur
- ☐ Prüfung am PC
- ☐ Hausarbeit (ggf. mit Präsentation)
- ☐ Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
  - ☑ PF ☑ WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
  - ☑ PF ☑ WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
  - ☑ PF ☑ WPF
- Künstliche Intelligenz und Data Science
  - ☑ PF ☑ WPF
- Medizininformatik
  - ☑ PF ☑ WPF

### Angebot
- ☑ Sommersemester ☑ Wintersemester ☐ Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit: 5
- Selbststudium: 60 Stunden
- 90 Stunden

### Lehrende[r]
- Prof. Dr. K. Knorr

### Modulverantwortliche[r]
- Prof. Dr. K. Knorr

### Änderungsdatum
- 22.11.2022
## Robotersehen

### Inhalte
- Technologien (Kamera, TOF, LiDAR, RADAR)
- Kameras und Bildentstehung
- Merkmale in Bildern und Bildfolgen
- Kalibrierung
- Hand-Auge-Kalibrierung
- Rekonstruktionsverfahren
- Optischer Fluss (lokale, globale und Kombinationen)
- Visual Servoing (VS)
- Visuelle Odometrie (VO)
- Segmentierung
- Menschliche Posenrekonstruktion
- Tracking

### Lernergebnisse
Die Studierenden können
- moderne Technologien verstehen und für praktische Anwendungen auswählen,
- die Abbildungsvorgänge von Kamerasystemen versteht,
- Merkmalsskriptoren aus Bildern generieren und bewerten,
- Kameras kalibrieren (Theorie und Praxis),
- Szenen und Objekten rekonstruieren,
- Modelle für die Bewegungsschätzung in Bildfolgen herleiten und anwenden,
- die Kameratrajektorie aus der Bewegung der Kamera generieren,
- Bildsegmentierungen mit Deep Learning-Techniken durchführen, und
- Key Point-Detektionsverfahren mit Deep Learning-Techniken praktisch umsetzen.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)  PF  WPF
- Informatik – Digitale Medien und Spiele [Schwerpunkt Medien]  PF  WPF
- Informatik – Digitale Medien und Spiele [Schwerpunkt Spiele]  PF  WPF
- Künstliche Intelligenz und Data Science  PF  WPF
- Medizininformatik  PF  WPF

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende[r]
- Prof. Dr. J. Graf

### Modulverantwortliche[r]
- Prof. Dr. J. Graf

### Änderungsdatum
- 17.05.2024
### Schlüsselkompetenzen

#### Inhalte
- **Studienorganisation**
  - Mündliche und schriftliche Kommunikation im Studium
  - Beteiligung an Lehrveranstaltungen (aktiv zuhören, mitschreiben, lesen von Fachliteratur, üben)
  - Organisationsformen des Lernens (Vorlesung, Übung, Tutorium, Seminar, Teamprojekt, Lerngruppe, Selbststudium)
  - Effiziente Vor- und Nachbereitung von Lehrveranstaltungen (lernen und arbeiten mit Skripten, Aufzeichnungen, Mitschriften, Literatur)

- **Lernen lernen**
  - Lernumgebung und Lernbedingungen (Lernzeit, Lernort / Arbeitsplatz, Lebensweise, Ablenkungen)
  - Lerntechniken (bisherige Lernmethodik reflektieren, Lernmethoden kennenlernen, Informationen und Zusammenhänge filtern, systematisch üben und wiederholen)
  - Lernherausforderungen (Selbstmotivation und -disziplin, Prokrastination)

- **Zeit- und Selbstmanagement**
  - Zusammenhang von Selbstdisziplin, Motivation und Zielen (anfangen, dranbleiben)
  - Persönliche Zeitsituation analysieren (Tagesablauf, Leistungskurve, zeitliche Ressourcen)
  - Reflexion eigener Stärken und Schwächen
  - Methoden des Zeitmanagements, Zeitplanung

- **Prüfungsvorbereitung**
  - Lernplanung (Lernziele und Prioritäten setzen, Zeitplan erstellen, Lernplan umsetzen/anpassen, Prüfungstag / -situation)
  - Besonderheiten verschiedener Prüfungsformen
  - Lernblockaden, Umgang mit Druck und Stress (Ursachen, Bewältigungsstrategien)

#### Lernergebnisse

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Keine

#### Literatur

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig
<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>30 Stunden</td>
<td>60 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende(r)</th>
<th>Romy Thomm, Dipl.-Wirt.-Inf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Romy Thomm, Dipl.-Wirt.-Inf.</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>19.02.2024</td>
</tr>
</tbody>
</table>
### Semantic Web

#### Inhalte

Betrachtete Themen sind:
- XML (Extensible Markup Language) und XML Schema
- Wissensrepräsentation mit RDF (Resource Description Framework) und RDF Schema
- Beschreibungslogiken
  - Wissensrepräsentation in verschiedenen Beschreibungslogiken
  - Erstellen von beschreibungslogischen Ontologien in Protégé
  - Schlussfolgerungen
- OWL (Web Ontology Language)
- SPARQL-Anfragesprache für RDF
- Ontologe Alignment

#### Lernergebnisse
Die Studierenden
- können Wissen aus verschiedenen Bereichen in RDF und RDF-S repräsentieren,
- Wissen in Form von beschreibungslogischen Ontologien repräsentieren,
- Ontologien in Protégé entwerfen,
- Schlussfolgerungen aus dem repräsentierten Wissen ziehen,
- Anfragen in SPARQL formulieren;
- sie kennen wichtige Knowledge Graphen und können Anfragen an diese stellen.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Angewandte Logik“

#### Literatur

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual) [PF, WPF]
- Informatik – Digitale Medien und Spiele [Schwerpunkt Medien] [PF, WPF]
- Informatik – Digitale Medien und Spiele [Schwerpunkt Spiele] [PF, WPF]
- Künstliche Intelligenz und Data Science [PF, WPF]
- Medizininformatik [PF, WPF]

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

#### Lehrende(r)
- Prof. Dr. C. Schon

#### Modulverantwortliche(r)
- Prof. Dr. C. Schon

#### Änderungsdatum
22.06.2023
### Seminar

#### Inhalte
Das Seminar umfasst die selbstständige Erarbeitung eines vorgegebenen begrenzten Themenbereiches anhand von wissenschaftlicher Fachliteratur und anderen Quellen sowie dessen schriftliche und mündliche Darstellung. Es werden wechselnde aktuelle Themen aus der Informatik angeboten, die im Schwierigkeitsgrad für das zweite Studienjahr angemessen sind.

#### Lernergebnisse

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Wissenschaftliches Arbeiten“. Weitere empfohlene Voraussetzungen abhängig vom Thema des Seminars; werden vom Betreuer festgelegt.

#### Literatur
Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual)  
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik
- Informatik-
  digitale Medien und Spiele (Schwerpunkt Medien) PF WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) PF WPF
- Künstliche Intelligenz und Data Science PF WPF
- Medizininformatik PF WPF

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18 Stunden</td>
<td>72 Stunden</td>
</tr>
</tbody>
</table>

#### Lehrende[r]
Dozenten des Fachbereichs Informatik

#### Modulverantwortliche[r]
Fachrichtungsleiter Informatik

#### Änderungsdatum
13.02.2023
Signal- und Bildverarbeitung

Inhalte

Teil: Signalverarbeitung

- Elementarsignale, Analog-Digitalwandlung
- 1D-Faltung, Auto-/Kreuzkorrelationsfunktion
- 1D-Fouriertransformation (FT) und FT-Theoreme, Spektraldichteschätzung, Cepstrum
- Beschreibung von LTI-Systemen, Frequenzgang, Übertragungsfunktion
- Filterung im Frequenzbereich und Diskrete Filter (z-Transformation)
- Kurzzeitfouriertransformation, Wavelettransformation, Multiskalenanalyse

Teil: Bildverarbeitung

- Representation von Bilddaten, Farbräume
- Punktoperatoren, Histogramme, Kontrastverbesserung
- 2D-Faltung, Template Matching, Punkt-/Kantendetektion, Schärfung
- 2D-Fouriertransformation, Filterung, Interpolationsverfahren, Multiskalenanalyse
- Texturalanalyse, Segmentierungsverfahren, Morphologische Operatoren, Formmaße
- Deep-Learning zur Bildklassifikation, Objektdetektion und Segmentierung

Lernergebnisse

Die Studierenden

- haben ein fundiertes Verständnis der Funktionsprinzipien und Aufgaben von Signal- und Bildverarbeitungsmethoden,
- kennen Anforderungen und Vorgehenskonzept dieser Methoden,
- können Methoden praktisch entwickeln und an aktuellen Fragestellungen anwenden,
- und erlangen die Fähigkeit, aktuelle Entwicklungen zu verstehen, kritisch zu reflektieren und eigenständig umzusetzen.

Lehrform

Art und Umfang

- Vorlesung
- Übung
- Seminar/Seminartischer Unterricht
- Labor
- Projekt

Voraussetzungen für die Teilnahme

Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“, „Lineare Algebra“, „Analysis und Numerik“ sowie „Maschinelles Lernen und Neuronale Netze“

Literatur

- Wilhelm Burger, Mark James Burge: Digitale Bildverarbeitung. Springer Vieweg
- Martin Werner: Digitale Bildverarbeitung. Springer Vieweg

Prüfungsvorleistung

- Regelmäßige Teilnahme an der Vorlesung
- Regelmäßige Teilnahme an den Übungen
- Regelmäßige Bearbeitung von Haus-/Laborarbeiten
- Bestehen von Leistungsstandkontrollen

Prüfungform

Art und Umfang

- Schriftliche Prüfung
- Mündliche Prüfung
- Prüfung am PC
- Hausarbeit / Projekt mit Kolloquium

Verwendbarkeit

Informatik (auch dual) 
Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
Künstliche Intelligenz und Data Science
Medizininformatik

Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand

ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende[r]

- Prof. Dr. J. Lohscheller
- Modulverantwortliche[r]
- Prof. Dr. J. Lohscheller

Änderungsdatum

05.02.2024
### Inhalt
- Einführung in den objektorientierten Software-Entwurf
- Konzepte und Notation (UML) für die objektorientierte Analyse und den objektorientierten Entwurf
- Kriterien für einen guten Entwurf
- Grundkonzepte
- Statische Konzepte
- Dynamische Konzepte
- Analysemuster
- Checklisten zur Erstellung eines ODA-Modells
- Entwurfsmuster
- Unterscheidung der Prinzipien zum Entwurf, zur Architektur, zur Modularisierung, zur Wiederverwendung und zur Dokumentation

### Lernergebnisse
Die Studierenden
- verstehen, wie sich vor dem Kodieren ein passender Software-Entwurf auf die Software auswirkt,
- verstehen, wie sich die Wahl des Vorgehensmodells auf den Entwurf auswirkt,
- können objektorientierte Konzepte in den Phasen Analyse und Entwurf anwenden,
- können die objektorientierten Konzepte mit der Standardnotation UML beschreiben, verstehen, wie und wo die funktionalen und nichtfunktionalen Anforderungen im Entwurf umgesetzt werden (Vom „Was“ zum „Wie“),
- wissen, wie Sie am besten beim Erstellen objektorientierter Modelle vorgehen und wie sie gute von schlechten Modellen unterscheiden können,
- können die erlernten objektorientierten Konzepte umsetzen (Java),
- kennen die Bedeutung des Software-Entwurfs für die Software-Prüfung.

### Lehrform
- Vorlesung
- Übung

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Objektorientierte Programmierung - Grundlagen“ und „Mathematische Grundlagen“

### Literatur
- Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) ☑ PF ☑ WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) ☑ PF ☑ WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) ☑ PF ☑ WPF
- Künstliche Intelligenz und Data Science ☑ PF ☑ WPF
- Medizininformatik ☑ PF ☑ WPF

### Angebot
- Sommersemester ☑ Wintersemester ☑ Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
- Prof. Dr. C. Schmitz

### Modulverantwortliche(r)
- Prof. Dr. C. Schmitz

### Änderungsdatum
- 04.01.2023
Software-Management

Inhalte


Folgende Inhalte bilden die Schwerpunkte dieser Lehrveranstaltung:

- Benutzerorientierte Entwicklung
- Aktivitäten im Requirements-Engineering
- Gewinnung von Anforderungen
- Dokumentation von Anforderungen
- Konfliktmanagement von Anforderungen
- Wahrnehmen, Denken, Handeln
- Grundsätze der Dialoggestaltung
- Interaktionsdesign und Oberflächendesign
- Evaluation

Lernergebnisse

Die Studierenden können Anforderungen an interaktive System erarbeiten und dokumentieren. Damit sind sie in der Lage, gebrauchstaugliche Systeme zu gestalten, mit denen sich die jeweiligen Arbeitsaufgaben effektiv, effizient und zur Zufriedenheit der Benutzer erledigen lassen.

Lehrform

☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse der Module „Einführung in die Programmierung“ und „Datenstrukturen und Algorithmen“

Literatur


Studienleistung

☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform

☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit

Informatik (auch dual) ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) ☐ PF ☐ WPF
Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) ☐ PF ☐ WPF
Künstliche Intelligenz und Data Science ☐ PF ☐ WPF
Medizininformatik ☐ PF ☐ WPF

Angebot

☐ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand

ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende[r]

Prof. Dr. G. Rock, Prof. Dr. C. Schmitz

Modulverantwortliche[r]

Prof. Dr. G. Rock

Änderungsdatum

29.02.2024
## Software-Qualitätssicherung

**Inhalte**
- Bedeutung der Software-Prüfung, Sicherheit, Kosten und psychologische Aspekte im Software-Entwicklungsprozess
- Bedeutung der frühen Phasen des Softwareentwicklungsprozesses für die Qualitätssicherung
- Grundlagen für das Testen, Debuggen und Verifizieren von Software
- Grundbegriffe und Modellbildung beim Testen
- Konstruktive und analytische Maßnahmen zur Qualitätssicherung
- Statische und dynamische Review-Verfahren
- Verfahren zur Aufstellung von Testfällen
- Funktions-, strukturbasiertes und objektorientiertes Testen
- Software-Metriken: Arten, Bedeutung, Anwendbarkeit, Aussagekraft und Werkzeuge
- Testautomatisierung

**Lernergebnisse**

Die Studierenden
- kennen die Bedeutung der Software-Prüfung und verstehen, dass Softwarequalitätssicherung in allen Phasen der Softwareentwicklung stattfindet,
- überblicken den allgemeinen Ablauf der Testaktivitäten in allen Phasen der Softwareentwicklung,
- können Testen, Debuggen und Verifizieren unterscheiden sowie anwenden,
- verstehen die wesentlichen Testverfahren und können diese anwenden,
- kennen ausgewählte Werkzeuge zum Testen von Software und können diese anwenden.

**Lehrform**
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

**Empfohlene Voraussetzungen**
Kompetenzen gemäß der Lernergebnisse der Module „Einführung in die Programmierung“, „Mathematische Grundlagen“, „Objektorientierte Programmierung - Grundlagen“ und „Schlüsselkompetenzen“

**Literatur**
- The git Book: https://git-scm.com/docs/git/de

**Studienleistung**
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus- / Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

**Prüfungsform**
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

**Verwendbarkeit**

<table>
<thead>
<tr>
<th>Informatik</th>
<th>Pf</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (dual)</td>
<td>Pf</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td>Pf</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td>Pf</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>Pf</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>Pf</td>
<td>WPF</td>
</tr>
</tbody>
</table>

**Angebot**
- Sommersemester
- Wintersemester
- Unregelmäßig

**Arbeitsaufwand**

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

**Lehrende[r]**
- Prof. Dr. G. Rock

**Modulverantwortliche[r]**
- Prof. Dr. G. Rock

**Änderungsdatum**
- 09.01.2024
### Software-Qualitätssicherung (Transfer)

#### Inhalte
- Bedeutung der Software-Prüfung, Sicherheit, Kosten und psychologische Aspekte im Software-Entwicklungsprozess
- Bedeutung der frühen Phasen des Softwareentwicklungsprozesses für die Qualitätssicherung
- Grundlagen für das Testen, Debuggen und Verifizieren von Software
- Grundbegriffe und Modellbildung beim Testen
- Konstruktive und analytische Maßnahmen zur Qualitätssicherung
- Statische und dynamische Review-Verfahren
- Verfahren zur Aufstellung von Testfällen
- Funktions-, struktur-, und objektorientiertes Testen
- Software-Metriken: Arten, Bedeutung, Anwendbarkeit, Aussagekraft und Werkzeuge
- Testautomatisierung

**Transfer:**
- Lernorte sind sowohl die Hochschule wie auch der jeweilige Praxispartner.
- Die Vorlesung und die zugehörige Übung finden an der Hochschule statt.
- Die Studienleistung wird im Rahmen der Übungen erbracht.
- Die Prüfungsleistung wird beim Praxispartner erbracht. Der Praxispartner definiert gemeinsam mit dem Modulverantwortlichen ein Projekt, welches im Laufe des Semesters zusammen mit und beim Praxispartner bearbeitet wird.
- Die Prüfung findet an der Hochschule statt.
- Die Prüfung beinhaltet die Projektvorstellung als Vortrag mit anschließendem Reflexionsgespräch inklusive einer projektbezogenen Ausarbeitung.

#### Lernergebnisse
Die Studierenden
- kennen die Bedeutung der Software-Prüfung und verstehen, dass Softwarequalitätssicherung in allen Phasen der Softwareentwicklung stattfindet,
- überblicken den allgemeinen Ablauf der Testaktivitäten in allen Phasen der Softwareentwicklung,
- können Testen, Debuggen und Verifizieren unterscheiden sowie anwenden,
- verstehen die wesentlichen Testverfahren und können diese anwenden,
- kennen ausgewählte Werkzeuge zum Testen von Software und können diese anwenden,
- kennen die Theorie des Software-Testens und die zugehörige Praxis im betrieblichen Umfeld,
- erwerben bereits im Studium berufspraktische Erfahrungen und unternehmensspezifische Branchenkenntnisse,
- erwerben zusätzliche Kommunikationsfähigkeiten mit beispielsweise Teammitgliedern, Vorgesetzten oder Kunden im betrieblichen Umfeld,
- erwerben ein verstärktes Verständnis für Selbstmanagement und Eigenverantwortung.

#### Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Einführung in die Programmierung“, „Mathematische Grundlagen“, „Objektorientierte Programmierung - Grundlagen“ und „Schlüsselkompetenzen“

#### Literatur
- The git Book: https://git-scm.com/docs/git/de

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik
- Informatik (dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
<table>
<thead>
<tr>
<th>Modul</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medizininformatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebot</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Sommersemester ☐ Wintersemester ☐ Unregelmäßig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende[er]</th>
<th>Prof. Dr. G. Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. G. Rock</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>09.01.2024</td>
</tr>
</tbody>
</table>
## Spieleprogrammierung - Grundlagen

### Inhalte
- Grundlagen Engine-Design
- Systemprogrammierung für Spiele
- Audiodarstellung
- Animationsprogrammierung
- Simulationstechnik
- Netzwerkprogrammierung
- Gameplay-Programmierung
- Game AI
- Interface-Programmierung

### Lernergebnisse

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „C/C++-Programmierung“ und „Lineare Algebra“

### Literatur

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

### Lehrende[r]
- Prof. Dr. C. Lürig

### Modulverantwortliche[r]
- Prof. Dr. C. Lürig

### Änderungsdatum
13.04.2024
# Spieleprogrammierung - Vertiefung

## Inhalte
- Umsetzung eines Projektes in OpenGL und C/C++
- Programmierung in OpenGL
- Low level-Strukturierung einer Game Engine
- Komplexere Steuerungsprogrammierung
- Anwendung mathematischer Verfahren in C++ für ein praktisches Problem

## Lernergebnisse
Die Studierenden kennen die wesentlichen Schritte in der Low Level Engine-Programmierung. Sie können in der Planungsphase eines Spiels technische Gesichtspunkte, die beachtet werden müssen, benennen. Sie können Kenntnisse aus der Computergrafik, C++-Programmierung und linearen Algebra kombinieren und auf eine praktische Aufgabe anwenden.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der „C/C++-Programmierung“, „Computergrafik“, „Spielprogrammierung - Grundlagen“, „Lineare Algebra“ und „Technische Informatik“

## Literatur
V. Scott Gordon, John Clevenger: Computer Graphics Programming in OpenGL with C++, 2019, Mercury Learning and Information LLC.

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
Informatik (auch dual) [PF] [WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF] [WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF] [WPF]
- Künstliche Intelligenz und Data Science [PF] [WPF]
- Medizininformatik [PF] [WPF]

## Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

## Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
  - 5
  - 60 Stunden
  - 90 Stunden

## Lehrende(r)
Prof. Dr. C. Lürig

## Modulverantwortliche(r)
Prof. Dr. C. Lürig

## Änderungsdatum
14.03.2024
Symbolische Künstliche Intelligenz

Inhalte

Die Vorlesung gibt einen Überblick über symbolische Ansätze in der künstlichen Intelligenz mit Schwerpunkt auf Logik, symbolische Suche und Wissensrepräsentationsmethoden:

- Klassische Logik und Prolog
- Suche und automatisches Planen
  - Uniformierte Suche
  - Informierte Suche
  - Situationskalkül und STRIPS
- Wissensrepräsentation
  - Default Logik
  - Programmierung von Antwortmengen [Answer Set Programming]
- Agenten und Multagentensysteme (optional)
  - Agenten-Modelle

Lernergebnisse

Die Studierenden können

- grundlegende Suchstrategien wie Breitensuche, Tiefensuche und heuristische Suche auf Graphensuchprobleme anwenden und die entsprechenden Algorithmen implementieren,
- ein Planungsproblem im Situationskalkül und STRIPS modellieren und die Ausführung von Aktionen erklären,
- Probleme der Wissensrepräsentation mit Hilfe von Default Logik und der Antwortmengenprogrammierung modellieren und
die entsprechenden Inferenzmechanismen erklären und auf gegebene Beispiele anwenden.

Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse des Moduls „Angewandte Logik“

Literatur


Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform

- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit

- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand

- ECTS-Punkte: 5
- Kontaktzeit: 60 Stunden
- Selbststudium: 90 Stunden

Lehrende[r]

- Prof. Dr. C. Schon

Modulverantwortliche[r]

- Prof. Dr. C. Schon

Änderungsdatum

- 29.02.2024
## Systemadministration

### Inhalte
- Grundlagen und Konzepte der Systemadministration am Beispiel von UNIX/Linux-Systemen:
  - Aufbau von Rechnern
  - Was sind Betriebssysteme?
  - Aufgaben eines Systemadministrators
- Betriebssystemkonzepte
  - Prozesse und Threads
  - Speichermanagement
  - Dateiverwaltung
  - Rechteverwaltung
- Benutzerverwaltung
- Prozess-Scheduling
- Dienste und Bootvorgang
- Shell-Programmierung
- Ausgewählte Sicherheitsaspekte
- Praktische Übungen an Linux-Systemen

### Lernergebnisse
Die Studierenden
- überblicken den Aufbau von Rechnerhardware als Fundament moderner IT-Systeme,
- verstehen moderne Betriebssysteme und die dahinter stehenden Prinzipien als Erweiterung der Möglichkeiten der Hardware und als Ressourcenverwalter,
- haben sich ein tiefer gehendes Verständnis der typischen Aufgaben eines Systemadministrators und der Lösungsmöglichkeiten erarbeitet,
- beherrschen dazu passende Kommandozellenwerkzeuge und deren Programmierung in einer Linux-Shell, auch ohne Unterstützung durch grafische Administrationswerkzeuge,
- haben fortgeschrittene Lösungsprinzipien der Informatik (z.B. Abstraktion, Schichtenmodelle und Bootstrapping) kennen gelernt,
- sind sich der Bedrohungen für die IT-Sicherheit und der damit einhergehenden Verantwortung als Systemadministratoren von mit dem Internet verbundenen Systemen bewusst.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
- Kenntnisse als Anwender eines Betriebssystems

### Literatur
- Cameron Newham: Learning the bash Shell. 2005, O'Reilly.

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
  - 5
  - 60 Stunden
  - 90 Stunden

### Lehrende(r)
- Prof. Dr. J. Schneider

### Modulverantwortliche(r)
- Prof. Dr. J. Schneider

### Änderungsdatum
06.02.2023
Teamprojekt

Inhalte

Lernergebnisse
Die Studierenden haben durch die erfolgreiche Bearbeitung gezeigt, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein praktisches Problem in einem Team zu bearbeiten. Sie verfügen über ein breites und integriertes Wissen sowie über ein kritisches Verständnis der wichtigsten Theorien und Methoden. Sie sind in der Lage, die im Studium erworbenen Kenntnisse, Fähigkeiten und Methoden auf vorgegebene Fragestellungen anzuwenden. Sie leiten auf dieser Basis fundierte Lösungsansätze ab und formulieren eine dem Stand der Technik entsprechende Lösung für das praktische Problem. Durch die Teamarbeit werden insbesondere die Diskussionsfähigkeit, die Planung und Verteilung von Aufgaben, die Integration der erreichten Ergebnisse sowie die Präsentation der Zwischenergebnisse und Ergebnisse geschult.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Abhängig von der Aufgabenstellung; wird vom Betreuer festgelegt

Literatur
Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik ☒ PF ☒ WPF
Informatik [dual] ☒ PF ☒ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] ☒ PF ☒ WPF
Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] ☒ PF ☒ WPF
Künstliche Intelligenz und Data Science ☒ PF ☒ WPF
Medizininformatik ☒ PF ☒ WPF

Angebot
☒ Sommersemester ☒ Wintersemester ☐ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
10 15 Stunden 285 Stunden

Lehrende[r]
Dozenten des Fachbereichs Informatik

Modulverantwortliche[r]
Fachrichtungsleiter Informatik

Änderungsdatum
13.02.2023
Teamprojekt (Transfer)

Inhalte

Lernergebnisse
Die Studierenden haben durch die erfolgreiche Bearbeitung gezeigt, dass sie in der Lage sind, innerhalb einer vorgegebenen Frist ein praktisches Problem in einem Team zu bearbeiten. Sie verfügen über ein breites und integriertes Wissen sowie über ein kritisches Verständnis der wichtigsten Theorien und Methoden. Sie sind in der Lage, die im Studium erworbenen Kenntnisse, Fähigkeiten und Methoden auf vorgegebene Fragestellungen anzuwenden. Sie leiten auf dieser Basis fundierte Lösungsansätze ab und formulieren eine dem Stand der Technik entsprechende Lösung für das praktische Problem. Durch die enge Integration in ein Team beim Praxispartner wird insbesondere die Kommunikationsfähigkeit, die Planung und Verteilung von Aufgaben, die Integration der erreichten Ergebnisse sowie die Präsentation der Zwischenergebnisse und Ergebnisse geschult.

Lehrform
- [ ] Vorlesung
- [ ] Übung
- [ ] Seminar/Seminaristischer Unterricht
- [ ] Labor
- [x] Projekt

Empfohlene Voraussetzungen
Abhängig von der Aufgabenstellung, wird vom Betreuer in Absprache mit dem Praxispartner festgelegt

Literatur
Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

Studienleistung
- [ ] Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- [ ] Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- [ ] Bestehen von Leistungsstandkontrollen

Prüfungsform
- [ ] Mündliche Prüfung
- [ ] Klausur
- [ ] Prüfung am PC
- [ ] Hausarbeit (ggf. mit Präsentation)
- [x] Projekt (ggf. mit Präsentation)

Verwendbarkeit
- Informatik
- Informatik (dual)
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]
- Künstliche Intelligenz und Data Science
- Medizininformatik

Angebot
- [x] Sommersemester
- [x] Wintersemester
- Unregelmäßig

Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15 Stunden</td>
<td>285 Stunden</td>
</tr>
</tbody>
</table>

Lehrende(r)
Dozenten des Fachbereichs Informatik

Modulverantwortliche(r)
Fachrichtungsleiter Informatik

Änderungsdatum
15.01.2024
Technische Informatik

Inhalte
- Genereller Aufbau eines Rechners, Architekturmodelle
- Zwischen Compiler und Hardware (Gatter und Bausteine, Logik)
- Zahlendarstellung, Zahlensysteme, Code-Systeme
- Rechner-Arithmetik
- Gleitkommazahlen
- Boolesche Algebra
- Optimierungsverfahren
- Latches und Flip-Flops
- MIPS-Architektur
- Einfache Assembler-Befehle
- Einfache ALU (Arithmetic Logic Unit)
- Assembler-Erweiterung mit Programmflusssteuerung, Unterprogrammtechnik
- Speicherverwaltung: Stack und Heap
- Assembler-Pseudobefehle
- Steuerwerk und Datenpfad
- Caching und Pipelining

Lernergebnisse
Nach erfolgreicher Teilnahme können die Studierenden
- den prinzipiellen Weg von einer Hochsprache wie C/C++ über Compiler, Assembler, Maschinencode zur Rechnerarchitektur basierend auf logischen Bausteinen illustrieren,
- die Software-Hardware-Schnittstelle anhand der MIPS-Architektur diskutieren,
- die Komponenten Datenspeicher, Befehlspeicher, Programmzähler, Befehlsregister, Steuerung, ALU, Registervorrat und deren Zusammenspiel erklären,
- RISC- und CISC-Architekturen unterscheiden, Load/Store- und Register/Memory-Architekturen erörtern,
- logische Basisgatter zum Entwurf von Bausteinen wie Multiplexer, Demultiplexer, Vergleicher, Halb- und Volladdierer, De- und Encoder zusammensetzen,
- zwischen den Zahlensystemen umrechnen und die Verwandtschaft der 2-er Zahlensysteme erklären,
- den Aufbau der ASCII-Tabelle bezüglich Groß- und Kleinbuchstaben benutzen und so ein „to-upper“ oder „to-lower“ durch einfache Bitmanipulation realisieren,
- den Sinn eines nicht-positionsgewichteten „Unit Distance Code“ am Beispiel des Gray-Codes erklären und einen solchen Code aufbauen,
- zur Darstellung negativer Ganzzahlen das Zweierkomplement verwenden und dessen Vorteile gegenüber anderen Darstellungen erläutern,
- Überläufe bei vorzeichenlosen und vorzeichenbehafteten Darstellungen und deren Bedeutung auf Programmierenebene erläutern,
- Zahlen in die IEEE 754-Gleitkommadarstellung überführen und Bitmuster in dieser Darstellung in dezimale Werte zurück rechnen,
- Abstände zwischen darstellbaren Werten im normalisierten und denormalisierten Bereich berechnen,
- Größe und Genauigkeit anhand von Mantisse und Exponenten erläutern,
- erklären, wann und wie ein Underflow entsteht,
- Boolesche Algebra-Ausdrücke umformen und minimieren,
- DeMorgan's Theoreme anwenden, auch im Kontext universeller Gatter und PLAs,
- Karnaugh-Diagramme zur grafischen Minimierung algebraischer Ausdrücke anwenden,
- aus einer Wertetabelle die disjunktive (SOP) und konjunktive (POS) Form aufstellen,
- aus einem Schaltbild den logischen Ausdruck ableiten und umgekehrt das Schaltbild zu einem gegebenen logischen Ausdruck erstellen,
- Latches und Flipflops beschreiben und die „Evolution“ von SR-, D-, JK- und T-Flipflops illustrieren,
- D-Flipflops zu Registern zusammen bauen, sowie Register zu Registerblöcken mit zugehörigen Steuer- und Datenleitungen konstruieren,
- auf der MIPS-Architektur die Daten- und Steuerpfade ausgesuchter Assemblerbefehle vergleichen und untersuchen,
-Assemblerinstruktionen in binären MIPS-Maschinencode übersetzten,
- die Adressierungsarten Registeradressierung, direkte Adressierung, pseudodirekte Adressierung, Displacement-Adressierung und PC-relative Adressierung anwenden,
- kleinere Assemblerprogramme verstehen sowie Schleifen, Verzweigungen und Unterprogrammaufrufe aus einer höheren Sprache in Assembler-Befehlsfolgen übersetzen,
- Speicherbelegungen für statische Daten sowie Stack und Heap erklären,
- den Unterschied zwischen Call-by-Value und Call-by-Reference beurteilen und in der Programmierpraxis nutzen,
- Caching-Methoden am Beispiel eines Direct-Mapped-Cache erklären,
- Pipelining auf der MIPS-Architektur beschreiben, sowie
- das Zusammenspiel von Compiler, Assembler, Linker und Loader erklären.

Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt
### Empfohlene Voraussetzungen
Keine

### Literatur

### Studienleistung
- ☑ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- ☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- ☐ Bestehen von Leistungsstandkontrollen

### Prüfungsform
- ☐ Mündliche Prüfung
- ☑ Klausur
- ☐ Prüfung am PC
- ☐ Hausarbeit (ggf. mit Präsentation)
- ☐ Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) ☑ PF ☐ WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] ☑ PF ☐ WPF
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] ☑ PF ☐ WPF
- Künstliche Intelligenz und Data Science ☑ PF ☐ WPF
- Medizininformatik ☑ PF ☐ WPF

### Angebot
- ☑ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
Prof. Dr. S. Benzschawel

### Modulverantwortliche(r)
Prof. Dr. S. Benzschawel

### Änderungsdatum
22.11.2022
Theoretische Informatik

Inhalte

- Beweisformen, vollständige und strukturelle Induktion, induktive Definitionen
- Alphabet, Wörter, formale Sprachen
- Berechnungsmodelle, insbesondere WHILE-Programme
- Einführung in Python
- Algorithmbegriff, Berechenbarkeit, Existenz nicht-berechenbarer Funktionen
- Laufzeitanalyse für WHILE und Python-Programme, Bedeutung der Polynomialzeit
- Deterministische endliche Automaten, nichtdeterministische endliche Automaten, reguläre Ausdrücke, Eigenschaften regulärer Sprachen
- Kontextfreie Grammatiken, Parser für kontextfreie Sprachen
- Die Klassen P und NP, NP-Vollständigkeit, P-NP-Problem

Lernergebnisse

Die Studierenden können

- Grundkonzepte der Beschreibung von formalen Sprachen in deklarativer Form oder mittels Grammatiken anwenden,
- Transformationen zwischen den einzelnen Beschreibungsformen nachvollziehen und selbst durchführen,
- Syntax und Semantik von Berechnungsmodellen am Beispiel erläutern,
- Algorithmen- und Berechenbarkeitsbegriff erklären und auf einzelne Beispiele übertragen,
- Äquivalenzen zwischen Beschreibungsformen nachweisen,
- Algorithmen bzgl. Laufzeit und Korrektheit analysieren sowie das P-NP-Problem erläutern und Entscheidungsprobleme in diese Komplexitätsklassen einordnen.

Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Einführung in die Programmierung“

Literatur


Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform

- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

Verwendbarkeit

- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik

Angebot

- Sommersemester
- Wintersemester
- Unregelmäßig

Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

Lehrende[r]

Prof. Dr. H. Schmitz

Modulverantwortliche[r]

Prof. Dr. H. Schmitz

Änderungsdatum

29.02.2024
Therapeutic Games

Inhalte
- Theoretische Grundlagen therapeutischer Spiele [Theorien, Modelle]
- Anforderungen an die Entwicklung therapeutischer Spiele
- Interdisziplinäre Perspektiven bei der Entwicklung therapeutischer Spiele
- Wirkungswesen von Serious Games und Gamification, insbesondere im Kontext von Therapeutischen Spielen

Lernergebnisse
Die Studierenden
- besitzen Kenntnisse von Theorien zu therapeutischen Spielen,
- können verschiedene Aspekte und Evidenzen vergleichen und kritisch bewerten,
- können ethische und psychologische Aspekte bei der Entwicklung therapeutischer Spiele mitbeziehen,
- kennen die Anforderungen bei der Entwicklung therapeutischer Spiele,
- können sich bei der Entwicklung therapeutischer Ziele in die Rolle der anderen Disziplinen im Team versetzen.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Keine

Literatur
<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>☑ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsform</td>
<td>☑ Mündliche Prüfung</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
<td>Informatik (auch dual)</td>
</tr>
<tr>
<td></td>
<td>Informatik – Digitale Medien und Spiele (Schwerpunkt Medien)</td>
</tr>
<tr>
<td></td>
<td>Informatik – Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
</tr>
<tr>
<td></td>
<td>Künstliche Intelligenz und Data Science</td>
</tr>
<tr>
<td></td>
<td>Medizininformatik</td>
</tr>
<tr>
<td>Angebot</td>
<td>☑ Sommersemester ☑ Wintersemester ☐ Unregelmäßig</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>ECTS-Punkte Kontaktnzeit Selbststudium</td>
</tr>
<tr>
<td></td>
<td>5 60 Stunden 90 Stunden</td>
</tr>
<tr>
<td>Lehrende[r]</td>
<td>Prof. Dr. L. Breitlauch, Prof. Dr. S. Müller, Prof. Dr. C. Rezk-Salama</td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>Prof. Dr. S. Müller</td>
</tr>
<tr>
<td>Änderungsdatum</td>
<td>22.11.2022</td>
</tr>
</tbody>
</table>


### Tool- und Plugin-Programmierung

#### Inhalte
- Grundkonzepte der Pipeline-Programmierung (Editoren, Plugins, standardisierte Formate wie z.B. COLLADA)
- Media Asset Management
- Programmierung von Photoshop-Plugins
- Programmierung von 3ds Max-Plugins
- Programmierung von Office-Plugins
- Entwurf von Editoren
- Konverter- und Prozessorprogrammierung

#### Lernergebnisse
Die Studierenden überblicken alle zentralen Aspekte der Tool- und Plugin-Programmierung, die neben der Engine-Programmierung mit wachsender Projektkomplexität einen immer höheren Stellenwert bekommt. Sie sind in der Lage, für gegebene Problemstellungen die richtige Werkzeugstrategie zu entwerfen und zu implementieren.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Digitale Spiele“

#### Literatur

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)
- Künstliche Intelligenz und Data Science
- Medizininformatik

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

#### Lehrende(r)
- Prof. Dr. C. Rezk-Salama

#### Modulverantwortliche(r)
- Prof. Dr. C. Rezk-Salama

#### Änderungsdatum
13.02.2023

---

97
Usability Engineering und User Experience Design

Inhalte
- Projektmanagement für menschzentrierte Entwicklungsprozesse
- Kosten-Nutzen-Analysen von Usability- und User Experience-Maßnahmen
- Werkzeugunterstützung für Usability Engineering und User Experience Design
- Systems Engineering
- Discount Usability Engineering
- Agile und Lean UX Design
- Design Thinking
- Usability Engineering Lifecycle
- Contextual Design
- Scenario-based Design
- Inclusive- und Ability-based Design
- Usability Engineering-Reifegradmodelle für Unternehmen

Lernergebnisse
Die Studierenden können
- ein für Sie und die jeweilige Aufgabenstellung geeignetes Vorgehensmodell für Usability Engineering und User Experience Design nutzen, indem Sie zwischen den vorgestellten Vorgehensmodellen wählen und die Faktoren Zeit, Kosten und Qualität in der Planung und Steuerung entsprechende Projekte berücksichtigen.
- Werkzeuge (Software & Hardware) zur Unterstützung menschzentrierter Entwicklungsprozesse in eigenen Projekten anwenden, indem Sie auf die vorgestellten Anwendungen und Systeme zurückgreifen.
- analysieren, in welchem Maße Usability Engineering und User Experience Design in Unternehmen etabliert sind, indem Sie eines der vorgestellten Reifegradmodelle einsetzen.

Lehrform
☐ Vorlesung
☐ Übung
☐ Seminar/Seminaristischer Unterricht
☐ Labor
☐ Projekt

Empfohlene Voraussetzungen
Keine

Literatur

Studienleistung
☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
☐ Bestehen von Leistungsstandkontrollen

Prüfungsform
☐ Mündliche Prüfung
☐ Klausur
☐ Prüfung am PC
☐ Hausarbeit (ggf. mit Präsentation)
☐ Projekt (ggf. mit Präsentation)

Verwendbarkeit
Informatik (auch dual) ☐ PF ☒ WPF
Informatik – Digitale Medien und Spiele [Schwerpunkt Medien] ☐ PF ☒ WPF
Informatik – Digitale Medien und Spiele [Schwerpunkt Spiele] ☐ PF ☒ WPF
Künstliche Intelligenz und Data Science ☐ PF ☒ WPF
Medizininformatik ☐ PF ☒ WPF

Angebot
☐ Sommersemester ☐ Wintersemester ☒ Unregelmäßig

Arbeitsaufwand
ECTS-Punkte Kontaktzeit Selbststudium
5 60 Stunden 90 Stunden

Lehrende[r]
Prof. Dr. T. Mentler

Modulverantwortliche[r]
Prof. Dr. T. Mentler

Änderungsdatum
14.03.2024
# User Interface Design

## Inhalte
In der Veranstaltung werden konzeptionelle, konstruktive und gestalterische Fragen der Realisierung von Benutzerinterfaces behandelt.

## Lernergebnisse
Die Studierenden lernen die grundlegenden Begriffe, Konzepte und Techniken kennen, um benutzer- und anwendungs gerechte Benutzerinterfaces zu realisieren.

## Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

## Empfohlene Voraussetzungen
Keine

## Literatur

## Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

## Prüfungsform
- Mündliche Prüfung
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

## Verwendbarkeit
<table>
<thead>
<tr>
<th>Studiengang</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (auch dual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medizininformatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

## Arbeitsaufwand
<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

## Lehrende[r]
- Prof. Dr. T. Mentler

## Modulverantwortliche[r]
- Prof. Dr. T. Mentler

## Änderungsdatum
07.03.2024
### Visualisierung

#### Inhalte
Die Veranstaltung beschäftigt sich mit der Visualisierung wissenschaftlicher Daten, d.h. visuellen Darstellung von Simulations- und Messdaten unter Anderem aus Medizin, Naturwissenschaft und Technik. Der Schwerpunkt liegt dabei auf interaktiven und explorativen Techniken zur Abbildung abstrakter Datenfelder auf darstellbare Geometrien. 
- Gittertypen und Interpolation
- 2D-Skalarfelder
- Vektorfeldtopologie und Partikelbahnen
- 2D- und 3D-Strömungsvisualisierung
- Direkte und Indirekte Volumenvisualisierung
- Hardwarebeschleunigtes Volume Rendering

#### Lernergebnisse
Die Studierenden haben ein Verständnis für die visuelle Darstellung wissenschaftlicher Daten für unterschiedliche Anwendungsbereiche gewonnen und können effiziente Algorithmen und Darstellungsmöglichkeiten analysieren sowie umsetzen. Sie können insbesondere
- diskrete räumliche Strukturen verstehen und verarbeiten,
- visuelle Darstellungen für unterschiedliche abstrakte, räumliche Skalar- und Vektorfelder entwickeln, bewerten und umsetzen,
- numerische Probleme und Lösungsansätze aus Medizin, Naturwissenschaft und Technik überblicken,
- die Wirkungsweise visueller Darstellungen in einem anwendungsspezifischen Kontext analysieren und bewerten,
- das Gelernte auf neue Anwendungsgebiete übertragen.

#### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

#### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse der Module „Mathematische Grundlagen“ und „Computergrafik“

#### Literatur

#### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

#### Prüfungsform
- Mündliche Prüfung [nur bei geringer Teilnehmerzahl]
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

#### Verwendbarkeit
- Informatik (auch dual) [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Medien] [PF WPF]
- Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele] [PF WPF]
- Künstliche Intelligenz und Data Science [PF WPF]
- Medizininformatik [PF WPF]

#### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

#### Arbeitsaufwand
- ECTS-Punkte
- Kontaktzeit
- Selbststudium
- 5
- 60 Stunden
- 90 Stunden

#### Lehrende[r]
- Prof. Dr. C. Rezk-Salama

#### Modulverantwortliche[r]
- Prof. Dr. C. Rezk-Salama

#### Änderungsdatum
14.03.2024
## Wahrscheinlichkeitstheorie und Statistik

### Inhalte
- Wahrscheinlichkeitsrechnung
- Elementares Rechnen mit Wahrscheinlichkeiten
- Univariate Wahrscheinlichkeitsverteilungen
- Erwartungswert, Varianz, Kovarianz
- Bedingte Wahrscheinlichkeit, Satz von Bayes
- Multivariate Normalverteilung
- Gesetz der großen Zahlen, zentraler Grenzwertsatz
- Statistik
- Statistische Kenngrößen: Mittelwert, empirische Varianz, Median, etc.
- Hypothesentests (t-Test, Gauß-Test, Chi-Quadrat-Test)
- Fehlerarten, Test-Power
- Nichtparametrische Tests
- Schätztheorie (MLE, MAP)

### Lernergebnisse
Die Studierenden können
- die wesentlichen Inhalte der Veranstaltung wiedergeben,
- grundlegende Berechnungen im Bereich der Wahrscheinlichkeitstheorie und Statistik wie Erwartungswert, Varianz, Rechnen mit Verteilungsfunktionen usw. auch in unbekannten Aufgabenstellungen anwenden,
- die Definitionen und Sätze der Veranstaltung in einfacheren Problemstellungen (wie in den Übungen) selbständig anwenden,
- die Anwendbarkeit und Grenzen der präsentierten mathematischen Konzepte in praktischen Aufgabenstellungen beurteilen, sowie
- sich selbständig in neue Anwendungen und Methoden der Wahrscheinlichkeitstheorie und Statistik, die einen unmittelbaren Zusammenhang mit den Inhalten der Veranstaltung haben, einarbeiten.

### Lehrform
- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

### Empfohlene Voraussetzungen
Kompetenzen gemäß der Lernergebnisse des Moduls „Mathematische Grundlagen“

### Literatur
- Larry Wasserman: All of Statistics. Springer.

### Studienleistung
- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

### Prüfungsform
- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)

### Verwendbarkeit

<table>
<thead>
<tr>
<th>Informatik (auch dual)</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Medien]</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele [Schwerpunkt Spiele]</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td>PF</td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td>PF</td>
<td>WPF</td>
</tr>
</tbody>
</table>

### Angebot
- Sommersemester
- Wintersemester
- Unregelmäßig

### Arbeitsaufwand

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

### Lehrende(r)
- Prof. Dr. H.-P. Beise

### Modulverantwortliche(r)
- Prof. Dr. H.-P. Beise

### Änderungsdatum
11.10.2023
Web-Entwicklung

Inhalte

- Einführung: Einsatzgebiete, Historie, Laufzeitumgebungen, Dokumentationen, Entwicklungsumgebungen, Debugger
- JavaScript: Variablen, Datentypen, Operatoren, Funktionen, Kontrollstrukturen, Fehlerbehandlung, Datenstrukturen, Promises und async/await
- Objektorientierte Programmierung
  - Objekterzeugung
  - Prototypen
  - Vererbung: Prototyptypische Vererbung, Pseudoklassische Vererbung, ES-Klassensyntax
  - Datenkapselung und Module: Private Eigenschaften, Immediately Invoked Function Expression, Revealing Module, CommonJS-Module, ES-Modulsyntax
- Tools im Entwicklungsprozess
  - Erzeugung der Projektsstruktur
  - Debugging und Profiling
  - Überprüfung der Code-Qualität
  - Präprozessoren
- Clientseitige Entwicklung
  - HTML5
  - CSS: CSS-Präprozessoren (Less), Responsives Webdesign, Flexbox-Layouts, CSS-Frameworks
  - Dynamische Web-Anwendungen mit JavaScript: DOM-Manipulation, DOM-Events, AJAX (XMLHttpRequest, Fetch), WebSocket
  - Dynamisch erzeugte Grafiken (Canvas, SVG)
- Serverseitige Anwendungen mit Node.js
  - Node.js und ereignisgesteuerte Programmierung
  - Zugriff auf das Dateisystem
  - Zugriff auf Datenbanken (MySQL, SQLite, MongoDB)
  - Erstellen eines HTTP-Servers mit Express
  - Erstellen eines WebSocket-Servers
  - Packaging
- RESTful HTTP
  - REST-Grundprinzipien
  - Entwurf
  - Realisierung mit Express
  - Ausblick
- Hybride Anwendungen
  - Desktop-Anwendungen mit GitHub Electron
  - Mobile Anwendungen mit Apache Cordova

Lernergebnisse


Lehrform

- Vorlesung
- Übung
- Seminar/Seminaristischer Unterricht
- Labor
- Projekt

Empfohlene Voraussetzungen

Kompetenzen gemäß der Lernergebnisse des Moduls „Objektorientierte Programmierung - Grundlagen“

Literatur


Studienleistung

- Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- Bestehen von Leistungsstandkontrollen

Prüfungsform

- Mündliche Prüfung (nur bei geringer Teilnehmerzahl)
- Klausur
- Prüfung am PC
- Hausarbeit (ggf. mit Präsentation)
- Projekt (ggf. mit Präsentation)
<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
<th>PF</th>
<th>WPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik (auch dual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Medien)</td>
<td>PF</td>
<td></td>
</tr>
<tr>
<td>Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele)</td>
<td>PF</td>
<td></td>
</tr>
<tr>
<td>Künstliche Intelligenz und Data Science</td>
<td></td>
<td>WPF</td>
</tr>
<tr>
<td>Medizininformatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebot</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommersemester</td>
<td>☐</td>
</tr>
<tr>
<td>Wintersemester</td>
<td>☑</td>
</tr>
<tr>
<td>Unregelmäßig</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS-Punkte</td>
<td>5</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 Stunden</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende(r)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Bettinger, M.Sc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian Bettinger, M.Sc.</td>
<td></td>
</tr>
</tbody>
</table>

| Änderungsdatum                                    | 22.11.2022 |
**Wissenschaftliches Arbeiten**

### Inhalte
- Technisches Schreiben
- Informationsrecherche
- Verfassen wissenschaftlicher Berichte (Seminar-, Abschlussarbeiten)
- Formatierung und technische Umsetzung wissenschaftlicher Berichte
- Einführung und Einarbeitung in Latex
- Präsentation
- Erstellen von Präsentationen
- Präsentationstechniken
- Medieneinsatz in Präsentationen

### Lernergebnisse
Die Studierenden können technische Zusammenhänge und wissenschaftliche Ergebnisse in Form von Präsentationen und Berichten adressatengerecht darstellen und unter den erlernten Gesichtspunkten kritisch begutachten.

### Lehrform
- ☑ Vorlesung
- ☑ Übung
- ☐ Seminar/Seminaristischer Unterricht
- ☐ Labor
- ☐ Projekt

### Empfohlene Voraussetzungen
Keine

### Literatur
Helmut Balzert, Marion Schröder, Christian Schäfer: Wissenschaftliches Arbeiten. W3L GmbH.

### Studienleistung
- ☐ Regelmäßige Bearbeitung von Hausaufgaben (ggf. mit Präsentation)
- ☐ Bearbeitung von Haus-/Laborarbeiten (ggf. mit Präsentation)
- ☐ Bestehen von Leistungsstandkontrollen

### Prüfungsform
- ☐ Mündliche Prüfung
- ☐ Klausur
- ☐ Prüfung am PC
- ☑ Hausarbeit (ggf. mit Präsentation)
- ☐ Projekt (ggf. mit Präsentation)

### Verwendbarkeit
- Informatik (auch dual) ☑ PF ☐ WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Medien) ☑ PF ☐ WPF
- Informatik - Digitale Medien und Spiele (Schwerpunkt Spiele) ☑ PF ☐ WPF
- Künstliche Intelligenz und Data Science ☑ PF ☐ WPF
- Medizininformatik ☑ PF ☐ WPF

### Angebot
- ☑ Sommersemester ☐ Wintersemester ☐ Unregelmäßig

### Arbeitsaufwand
- ECTS-Punkte: 5
- Kontaktzeit: 10 Stunden
- Selbststudium: 140 Stunden

### Lehrende(r)
Prof. Dr. J. Lohscheller

### Modulverantwortliche(r)
Prof. Dr. J. Lohscheller

### Änderungsdatum
14.03.2024