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Abstract—Following the vision of decentrally generated and
locally out-balanced renewable electric energy the research
project econnect Germany investigates the end user acceptance
of Vehicle2Grid and Grid2Vehicle applications. The algorithm
used to compute the charging/discharging of individual batteries
in electric vehicles (EV) will be an essential factor for end user
acceptance. This is because it controls the achievable driving
range and the cost savings for the individual user of an electric
vehicle. Additionally, the algorithm has to allow for an effective
control by the energy provider to compensate for the natural
fluctuations of wind and solar energy in the region. As the final
authority to decide about charging/discharging needs to be the
battery management system of the EV, it is a natural choice to
embed the algorithm in an electronic control unit of the car. This
paper presents an algorithm designed to meet these requirements
and demonstrates that it scales down to the low computing power
of embedded automotive systems.

I. INTRODUCTION

Two important trends are currently underway to reduce
the negative impact our society has on the environment.
First, electric vehicles are becoming more and more com-
mon, reducing fossil fuel consumption and carbon dioxide
emissions compared to conventional vehicles [1]. Second,
renewable energy sources are used increasingly, improving the
sustainability of energy production [2]. These two trends come
with complementary challenges and opportunities, and offer
significant synergies [3]. The batteries of EVs can be utilized
to compensate for fluctuations of renewable energy (e.g. wind
and solar energy) availability in a region by Grid2Vehicle
(G2V) and Vehicle2Grid (V2G) technology [3]. For these
future scenarios to work, a high percentage of future EV
owners has to support the usage of their batteries and accept the
consequences. The algorithms controlling the G2V and V2G
functionality will be an essential factor for end user acceptance.
This is because their outcome controls the achievable driving
range and the cost savings for the individual user of an EV.
Additionally, the algorithms have to allow for an effective con-
trol by the energy provider to compensate for the fluctuations
of wind and solar energy in the region. Furthermore, the final
authority to decide about charging/discharging is the battery
management system of the EV itself. Therefore, it is a natural
choice to embed the algorithm in an electronic control unit of
the car. For a field trial on the end user acceptance of G2V
and V2G in the econnect Germany project five series EVs
have been upgraded with an in-car computer that computes
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the charging/discharging plan for the individual EV based on
a price signal. In this paper the algorithm computing the G2V
and V2G plans is presented. The algorithm is tailored to allow
for a high user acceptance and reflect the situation of municipal
energy providers in a deregulated market.

The rest of the paper is structured as follows. In Section II,
we will give an outline of the problem statement that was used
as a basis. Section III gives a short outline of related work.
The main algorithm of the system is described in Section IV.
Thereafter the results of an experimental evaluation regarding
the scalability of the algorithms computation time to embedded
systems with less computing power is presented in Section V.
Concluding remarks and an outlook on future research are
given in the last Section.

II. PROBLEM STATEMENT

This section provides an informal description of the use
case and usage of the systems and algorithms designed for
planning of charge processes. A formal specification of the
main algorithm is given in Section IV-B.

To achieve the desired synergies between EVs and re-
newable energies, a high market penetration and usage of
G2V/V2G technology is required. Hence, it is necessary to
consider economic and technical factors, as well as user
acceptance. The system should be kept as simple as possible
at first. Therefore, the following basic decisions were taken for
the field trial on end user acceptance: (1) Centralized charging
puts the vehicle under external control. As drivers may be
reluctant to give up control of their vehicle, this may reduce
user acceptance. Thus, a decentralized method is investigated
in which each vehicle produces an individual charge plan,
which is carried out by the energy provider. (2) A final solution
should be simple and explainable in simple terms like “The
vehicle buys energy when it is cheap and sells energy when it
is expensive”. (3) The interface is to be kept simple and be de-
veloped in a user centered development process. Planned trips
should not be predicted automatically, since mispredictions
may render the car unusable when needed and hence reduce
user acceptance. (4) Energy should be traded with a single
energy provider to eliminate influence from different market
reputations or by confusing users with complicated market
constructs. (5) Dynamic price information set by the energy
provider shall be used as lean and transparent interface to
control the charging/discharging process of individually owned
EVs. The energy provider can set the prices in accordance
with the predicted and actual energy availability of renewable
energy sources.
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Figure 1. The user interface for planning of the charge process

The process of developing the human-machine interface in
a user centered approach is described in [4]. A preliminary sur-
vey of possible users uncovered two main usage patterns: (1)
Short unexpected rides and (2) longer rides at a planned point
of time in the future. Examples for (1) are short spontaneous
trips to a bar or the movies, but also unexpected emergencies
such as a quick ride to the hospital. Examples for (2) may
be daily commutes or longer rides on weekends. Hence, an
interface is needed which allows configuration for both use
cases. We decided on a simple interface in which the user
can both set the distance that should always be provided for
spontaneous trips as well as the desired distance and departure
time for the next planned trip [4]. The owner of an electric
vehicle plans his next charging period and leaves it to the in-car
computer to calculate a cost-optimized charging/discharging
cycle.

The algorithm to calculate the charge plans was also
designed to handle both use cases. The charge process was
divided in three phases. In the first phase the distance needed
for spontaneous trips is charged as fast as possible without
regards to the current price. This phase is referred to as the
spontaneous plan. In the second phase the distance configured
for the next planned trip is provided by the time of departure,
with the goal of keeping the total cost as low as possible. This
is called the planned plan. After the departure time has passed
and before the owner has picked up his car, only optimization
of the costs may be performed, but the available distance must
not be discharged below the configured limit. This part of the
plan is called the refining plan.

Furthermore, the algorithm is designed to take the realistic
behavior of the battery into account. As the new state of
charge after a period of charging or discharging depends on
the applied voltage as well as the current state of charge of
the battery (see e. g. [5]), it must be possible to model such a
behavior. The system itself should be independent from the
model. For now the model does not include other factors
which may influence the change of available distance – such
as temperature or humidity – because the car that was used
does not provide sensor readings for these values.

As a last constraint the algorithm has to be efficient enough
to run on an electronic control unit in a car. For the field
trial the program runs on one partition of a mixed criticality
platform within the car [6]. The main processor was a TI
OMAP4460 running at 1GHz. Because of the partitioning
only one core was available so no true parallelisation of the
algorithm could be used for speedup.

III. RELATED WORK

Research on V2G and optimal charging of electric ve-
hicles is mainly focused on centralized methods, as these
represent the traditional view point of large energy providers
and grid operators [7]. Charge plans for centralized charging
can be computed using common optimization techniques, e. g.
convex optimization [8]. Research on decentralized planning
focuses mainly on coordination of charge processes of multiple
vehicles, e. g. using game theoretic approaches [9] or by
considering vehicles as part of a multi-agent system [10].

In [10] vehicles are part of a multi-agent system which
also includes aggregators and grid operators. Planning of the
charge process is done by trading energy on different markets
depending on the time until departure. Contracts and coalitions
necessary for trading on these markets are formed directly
between the agents. In [9] a game theoretic analysis of charging
strategies based on real time price information is performed.
To achieve a valley filling effect, a penalty for deviating from
the population average is added to the prices. This eliminates
oscillations of charge plans, which are caused when all vehicles
shift charging to the cheapest moment and simultaneously
increase the predicted load at that time. Discharging of vehicles
is not considered.

In [11] a dynamic programming algorithm is presented,
which can be used to calculate control strategies for plug-
in hybrid vehicles. These control strategies include trading
energy on different energy markets while plugged in as well
as switching between battery or internal generator.

IV. PLANNING OF THE CHARGE PROCESS

A. Definitions

Prices and charge operations are planned in 15 minute
intervals by the energy provider. We will take the number t to
indicate the t-th 15 minute interval based on some arbitrary
reference point. The whole set of 15 minute intervals will be
denoted by T . Furthermore let Ta,b := {a, a + 1, . . . , b} for
a < b denote a continuous subset of T .

A charge plan u for the time Ttstart,tend
is defined as a

function from the continuous subset Ttstart,tend
to the set of

operations O := {−1, 0,+1}. The function uk,l will denote
the partial plan defined over the continuous subset Tk,l. The
set Utstart,tend

will denote the set of all possible plans for the
Time Ttstart,tend

.

A price list p is defined as a function from the set T and an
operation in O to a price given in cent/kWh in steps of one-
hundreth of a cent. p(+1, t) denotes the price to be paid by
the end user for charging at time interval t. p(−1, t) indicates
the price paid by the energy provider for discharging at time
interval t. All prices must be positive, p(0, t) must always be
0.

A battery model is defined as a triple (δevse, δbat, smax).
Where δbat and δevse are functions from a pair (o, s) where
o ∈ O denotes an operation and s the current state of charge of
the battery. The function δbat returns the difference in charge
of the battery if the operation o is applied on a battery with
the current state of charge s while the function δevse returns
the required energy taken in from the charge station (electric
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vehicle supply equipment, EVSE). The following constraints
apply:

δbat(−1, s) ≤ δevse(−1, s) ≤ 0 (1)
δbat(0, s) = δevse(0, s) = 0 (2)

δevse(+1, s) ≥ δbat(+1, s) ≥ 0 (3)

The state of the battery su,t at the end of the 15 minute
interval t for a charge plan u over Ttstart,tend

can be calculated
as

su,t :=


sinit for t < tstart
su,t−1 + δbat(u(t), su,t−1) for tstart ≤ t ≤ tend
ŝu for t > tend

(4)
where sinit indicates the state of the battery before the charge
plan is executed and ŝu := su,tend

denotes the final charge
after execution of u. A charge plan u is called s1, s2-bounded
if there is no t for which su,t < s1 or su,t > s2.

The cost for executing a charge plan u over Ttstart,tend
up

to the end of time interval t with tstart ≤ t ≤ tend can be
calculated as

Cu,t :=

t∑
k=tstart

δevse(u(k), su,k−1)p(u(k), k). (5)

The total cost Ĉu of a charge plan u is Ĉu := Cu,tend
.

When comparing two charge plans, it is necessary not
only to take into account that these two plans have different
prices, but also that the battery may have a different state of
charge after execution of these plans. Hence, the value Vu,t
for executing plan u until end of time interval t is defined as

Vu,t := (st − sinit)p̄− Cu,t. (6)

Here p̄ is the average price for the price list p. p̄ computed from
both prices for charging and discharging with equal weight.
Other methods for the calculation of p̄ were also considered,
e. g. taking the minimum or maximum of average buy and
sell prices. The final value of a charge plan is given as V̂u :=
Vu,tend

. The charge plan with the highest value for all possible
charge plans that reach the same final charge s at time t is
denoted as

u∗s,t := arg max
u∈Utstart,t

{V̂u}. (7)

Furthermore, let V ∗s,t = Vu∗
s,t

denote the optimal value that can
be achieved.

B. Formal Specification

The algorithm takes an initial charge of the battery sinit, a
time interval tstart at which the charge plan must start and a
time interval tend at which it must end, a price list p, a battery
model b := (δevse, δbat, smax), and user settings. The user
settings consist of the triple (ssp, spl, tdep) where ssp indicates
the required charge state for spontaneous trips, spl indicates
the required charge for the next planned trip and tdep indicates

the planned departure time. It must be assured that tstart ≤
tdep ≤ tend.

The algorithm produces a 0, smax-bounded charge plan u
over Ttstart,tend

with several hierarchical requirements.

1) Let tsp denote the first time interval for which
su,tsp ≥ ssp. Then tsp − tstart must be minimal for
all possible plans.

2) utsp,tdep must be ssp, smax-bounded.
3) Vu,tdep must be maximal for all plans satisfying the

previous constraints.
4) utdep,tend

must be srf , smax-bounded, where srf :=
max{ssp, spl}.

5) The values Vu,t must be monotonous non-decreasing
for t > tdep.

All further analyses assume that at least one plan with
su,tdep ≥ spl and su,tdep ≥ ssp exists. If no such plan exists
the algorithm fails. In the final system currently used in the
field trial, failures are handled by indicating to the user that
the given settings cannot be used to create a plan.

C. Algorithm for the spontaneous plan

The spontaneous plan refers to the part of the plan before
the spontaneous distance is fulfilled, i. e. before su,t ≥ ssp.
For this plan it is only required that the partial plan remains
0, smax-bounded and that Requirement 1 is fulfilled. Hence, it
is sufficient to produce a first part of the charge plan that only
contains the operation +1 until su,t ≥ ssp.

D. Algorithm for the planned plan

As above, let tsp be the time interval after that ssp has been
reached. By Requirement 1 it is ensured that su,tsp ≥ ssp.

The algorithm for calculation of the planned plan is based
on dynamic programming [12]. For this we observe that

V ∗s,t = max{V ∗s,t−1 + p̄δbat(o, s
′)− δevse(o, s′)p(o, t) |

s′ + δbat(o, s
′) = s, o ∈ O}

(8)

holds for any given charge state s and any given 15 minute
interval t, tsp ≤ t ≤ tend.

Using (8) we can build a table of reachable charge states
and the associated cost for each 15 minute interval t. An entry
s→ (o, v) in this table at time t represents the fact that charge
state s is reachable at time t by performing operation o at that
time and the resulting plan has a value v. The table is seeded
by an entry su,tsp → (+1, Vu,tsp) at time tsp, representing
the state that is reached after spontaneous planning. At each
iteration the time is increased by one unit, and the next row
of the state table is calculated. To calculate the next row each
reachable state stored in the last row is considered and all
states reachable from there are calculated. In case the same
state is reached multiple times only the path with the highest
value is left in the state table. Since (8) relates optimally
reachable states at time t to optimally reachable states at time
t− 1 the resulting entries in the state table at t also carry the
optimal value. The calculation of the state table is illustrated
in Figure 2.



3rd International Conference on Connected Vehicles & Expo (ICCVE 2014), November 3-7, 2014,
Vienna, Austria

Algorithm 1 Building a Statetable
1: m← []; t← tsp
2: m[t]← {su,tsp → (+1, Vu,tsp)}
3:
4: while t < tdep do
5: t← t+ 1; m[t]← {}
6: for all (s→ ( , v)) ∈ m[t− 1] do
7: for all o ∈ {−1, 0,+1} do
8: s′ ← s+ δbat(o, s); v′ ← v + δbat(o, s)p̄− δevse(o, s)p(i)
9:

10: if s′ < ssp or s′ > smax then
11: Skip this operation
12: end if
13:
14: use plan← true
15: for all (s→ ( , v)) ∈ m[t] with s ∈ [s′ − ε, s′ + ε] do
16: if v ≥ v′ then
17: use plan← false
18: end if
19: end for
20: if use plan then
21: m[t]← {(s′′ → (o, v)) | (s′′ → (o, v)) ∈ m[t] ∧ s′′ /∈ [s′ − ε, s′ + ε]}
22: m[t]← m[t] ∪ {s′ → (o, v′)}
23: end if
24: end for
25: end for
26: end while

Figure 2. Illustration of the computed charge state table. At time t only
the value v is stored for charge state s. At this time it is possible to
charge, discharge or do nothing. At time t + 1 the table will contain the
value v′ := v + δbat(−1, s)p̄ − δevse(−1, s)p(−1, t + 1) at position
s + δbat(−1, s), the value v at position s and the value v′′ := v +
δbat(+1, s)p̄ − δevse(+1, s)p(+1, t + 1) at position s + δbat(+1, s). If
multiple operations lead to the same charge state from a previous state, only
one will be used (indicated by dotted lines).

Because of the battery model, multiple charge plans may
reach very similar states, but not exactly the same state. For
example, if the battery model takes dissipation between charge
station and the battery into account, a sequence of charging and
discharging may not reach the same state as doing nothing two
times in the row, as each charging and discharging may reduce
the battery state somewhat due to dissipation. Hence, keeping
all reachable charge states in the state table may lead to a
combinatorial explosion of the number of states at each further
time step. To reduce this problem an approximation strategy is
proposed. This strategy consists of not only comparing entries
that have exactly the same charge state when removing other
entries upon calculation of a new reachable state, but also other
states, which only differ by a given ε. This method is similar
to the common method of comparing floating point values by
checking if the difference is smaller than a fixed ε. If this

approximation is performed, however, it cannot be guaranteed
that the resulting plan will be optimal. An experimental
evaluation of this strategy is presented in Section V-B. The
algorithm is presented in Algorithm 1.

To calculate the final plan from a state table first the charge
state s∗ with the highest value in last row of the table that is
greater than spl has to be found. Then from this element in
the table the plan can be traced back by following the stored
operations. This method is similar to the trace-back portion of
other dynamic programming algorithms.

E. Algorithm for the refining plan

For refinement planning only Requirements 4 and 5 have
to be considered. These requirements can be translated di-
rectly into an algorithm. For this at each time step each
operation is simulated and tested whether the requirements
hold. In case neither charging nor discharging lead to an
increase of the value or they would lead to a plan that is not
srf , smax-bounded, no charging or discharging is performed.

F. Reaction to updated price predictions

In the current field trial, price predictions are based on
weather forecasts and provided for at least the next 24h.
Weather predictions are both based on predictions from a
meteorological service as well as local measurements. Weather
data from the meteorological service is updated every four
hours, local measurements are taken in 15 minute intervals.
In case weather predictions change unexpectedly the price
predictions are updated and transmitted to all vehicles. On
receiving new price predictions, all plans are recalculated and
charging continues based on the updated plans. All considera-
tions of optimality are based on the behaviour for an unaltered
prediction.
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V. EVALUATION

A. Theoretical Evaluation

For our analysis it is assumed that the prices in the price list
can be accessed in O(1), e.g. by storing prices in an array. Fur-
thermore, it is assumed that the battery model can be computed
in O(1) as well. In case of more complex implementations of
the price list or the battery model, additional factors may need
to be included.

The calculation of the spontaneous plan can be done with
time and space complexity O(tsp − tstart). This is optimal,
as at least tsp − tstart charge steps are needed to reach the
spontaneous distance given by the user.

The analysis for calculation of the planned plan is first
carried out for ε > 0. For this let

n :=
smax − ssp

ε
(9)

denote the maximal number of entries in each row of the state
table. Then the loop in line 6 will be repeated O(n) times.
The most complex operations in this loop are the retrieval
of possible states that have to be removed in line 15 and
replacement of non-optimal states in lines 21 and 22. Using a
balanced binary tree to store the calculated states all these
operations can be performed in O(log n). Hence, the loop
at line 6 can be computed in O(n log n). This loop will be
invoked once for each iteration of the loop in line 4. This loop
will run exactly m := tdep−tsp times. Therefore, the total time
complexity of the algorithm is O (m ∗ n log n) . The algorithm
requires the complete state table to be stored for the trace-back
portion, so the space complexity is O(m ∗ n).

In case ε = 0 the above analysis is invalid. In this case de-
pending on the battery model, the algorithm may have to deal
with combinatorial explosion. Hence, the number of stored
states in iteration i of the outer loop will be O(3i). Again we
assume that a balanced tree is used for storage of each line,
so that all operations are in O(log(N)) with N the size of the
tree. Therefore, the total time complexity of the loop starting
in line 6 is O(log(3i)) = O(i). The total time complexity of
the algorithm is O(

∑m
i=1 3i ∗ i) = O((2m−1)3m). The space

complexity for the complete state table is O(3m).

The refining plan is calculated in space and time complex-
ity O(tend − tdep), as each time step after the departure time
has to be checked at least once. This part of the algorithm is
also optimal.

B. Experimental Evaluation

As indicated in Section I, the final algorithm has to run
in a constrained environment on an embedded device within
the car. A full update of the charge plan is required for each
user input, to provide predictions of the current price. Thus,
it is necessary to test the algorithm in this environment. This
way the influence of the factor ε can also be estimated. As the
execution time is mostly accounted for by the calculation of
the planned part of the charge plan, only this portion of the
full algorithm is analyzed here.

To benchmark the algorithm N = 10000 inputs were
generated randomly and the algorithm was run with different

values of ε. A simple battery model was used with

δevse(o, s) =


500Wh for o = +1

0Wh for o = 0

−500Wh for o = −1

and

δbat(o, s) =


500Wh ∗ .95 for o = +1

0Wh for o = 0

−500Wh/.95 for o = −1,

i. e. the current state of charge was not considered and 5%
dissipation between battery and charge station was taken into
account. The maximum capacity of the battery was 16kWh.
The power, dissipation and maximum capacity were deter-
mined from the physical characteristics of the vehicle and
charger currently used in the field trial.

To use different price predictions the start time of each
charge process was varied in steps of 3h over the range of
one week. To sample settings that were in accordance with
observed user behaviour, the desired planned distance varied
between 30km and the maximal available distance in 5km
steps. The spontaneous distance was varied between 0km and
60km also in 5km steps. The departure time was between 1h
and 24h in the future in 1h steps. The charge at arrival was
between 0kWh and 16kWh varied in 4kWh steps. Settings
for which no charge plan was possible, e. g. because the
time until departure was insufficient, were excluded. Of all
generated setting N = 10000 were selected randomly to
be included in the analysis. The spontaneous and planned
distances were chosen based on a preliminary analysis of user
patterns in the field trial, i. e. they were chosen in the range
of the 90th percentile of the actual settings used in the field
trial. The maximum departure time was limited to keep the
execution time of the optimal algorithm within an acceptable
limit. However, other tests of the approximate algorithm with
departure times further in future, showed that the execution
times did not increase drastically after the chosen 24h limit.

The price data was taken from realistic price data produced
by a municipal German energy provider as part of the project
econnect (see Section IV-F).

The resulting execution times are shown in Figure 3a. A
system is considered to respond instantaneously by users, if the
response time is below 0.1s [13]. On average this was the case
for ε ≥ 0.002Wh. However, maximum response times were
much higher at this epsilon. For ε ≥ 50Wh the algorithm
responded instantaneously for all plans. As [13] indicates,
at response times less than 1s no special user feedback is
necessary to indicate the system is still running correctly. The
response time of the system remained under this threshold
for ε ≥ 0.002Wh. For comparison of the approximation with
the optimal algorithm the average fraction of execution time
reduction is presented in Figure 3b. The fraction of execution
time reduction was computed as (topt − tapprox)/topt, where
topt indicates the execution time of the optimal algorithm
and tapprox indicates the execution time of the approximative
algorithm.

No degradation in quality was detected as long as ε ≤
50Wh, i. e. the optimal plan was found for all settings. At
ε = 100Wh the optimal plan was still found for 82.3% of the
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Figure 3. Execution time of the algorithm in relation to ε. Figure 3a shows the absolute execution time in ms. Figure 3b shows the average fraction of reduced
execution time compared to the time required for calculating the optimal solution (i. e. ε = 0).

cases where the algorithm returned a result. In 0.48% of the
testcases no plan could be calculated at ε = 100Wh, i. e. the
algorithm failed to produce any plan for these testcases.

This analysis shows that the algorithm is usable for plan-
ning of charge processes on an embedded device within the
EV. With the tested battery model an acceptable execution time
was achieved without any quality degradation of the computed
charge plans. It should be noted that the used battery model
was kept as simple as possible; future tests should include
more realistic battery models.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, a system was presented that was designed
to investigate user acceptance for G2V/V2G technology. This
system includes algorithms for decentralized charge planning
on the vehicle. A theoretical and experimental evaluation
shows, that these algorithms can be used on an embedded
platform within the vehicle. The complete system is currently
used in a field study aimed at evaluating user acceptance of
G2V/V2G technology. The field trial will be completed by the
end of 2014, results will be presented after data collection has
been completed.

The algorithm was based on several basic decisions about
factors that may influence user acceptance, which were not
tested. Future studies on acceptance should test these assump-
tions, so that limiting factors for the large scale implementation
of G2V/V2G technology can be clearly identified. Further-
more, based on these basic decisions and the goal of this
study, the algorithm was designed to only take cost effective
charging for the user into account. Properties of interest for
grid operators were not investigated. Future research should
test these properties and propose possible modifications, e. g.
by adding a penalty term in the prices similar to the one in
[9].
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