Safety | ssues of Integrating 1Vl and ADAS functionality via
running Linux and AUTOSAR in parallel on a Dual-Core-
System*

Jorn Schneider, Tillmann Nett

Department of Computer Science
Trier University of Applied Sciences
Schneidershof

54293 Trier
J.Schneider@Hochschule-Trier.de
T.Nett@Hochschule-Trier.de

Abstract: The tight integration of In-Vehicle-Infotainment (1VI) applications and
Advanced Driver Assistance Systems (ADAS) or even semi-automatedgdriv
functionality on the same hardware offers new chances for itinosain the
automotive domain. One of the major challenges in this respect ishteva a
solution that satisfies the heterogeneous requirements from the involved
application and operating system worlds and guarantees the mgcieesdom

from interference to attain the required safety according to IS@283011].

This paper presents a prototypical solution and discusses the remairlieggesa

for the chosen virtualization-less approach.

The prototype was developed for the practical use in the resaajelbt@connect
Germany and successfully used in electric vehicles of a field studyier. An
open source variant of AUTOSAR OS and Linux run together ons#ree
processor of the system. Each operating system uses it own procegsofhe
chosen solution allows for the interaction between the differgalicagions of the
two operating systems and requires no virtualization layers thus ayoidin
additional resource demand and communication latencies.

1 Introduction

A huge number of innovative functions in modern vehicles utilize timebgwation of
formerly separated functional domains. Since the introduction of the CANirto
vehicles ever more communication links have been established in order to enable
interaction between previgly isolated functionalities. A new area of functional
interaction with promising possibilities are In-Vehicle-Infotainment (IVI)l &dvanced

! This work is partly funded by the German Federal Mini&ir Economic Affairs and Energy under grant
number 01ME12043 within the econnect Germany project.

Driver Assistance Systems (ADAS) or other safety-related vehicle functioast fagm

this area there are further classes of future systems that could benethdromegration

of open source operating systems such as Linux or Androiddi@SAR applications

on the same hardwardeveloping such systems confronts the industry with the
challenge of integrating a general purpose operating system and its applivatioas
real-time operating system and its safety-related applications.

Within the econnect Germany project a prototype of a system ridimux and

AUTOSAR on separate cores of the same processor was developed amt aséeld

study in five modified electric series cars. Although the system’s intended functionality

was different from an ADAS the basic challenges are quite similar.iSnpdper we
investigate the suitability of the chosen approach for combining IVI ADAS

functionality or similar cases with safety-related real-time applications gemeral
purpose functionality. This is done by summarizing the general challen§esxtion 3

describing the chosen realization and identifying remaining issues in Sdctiand
discussing the overall concept in comparison to other solution approacties final

Section. Additionally, the initial usage background of the developattype system is
given in Section 2 to allow for a better understanding of the chosen design

2 Usage Background of the Prototype

The current system was implemehi#uring the project econnect Germany for a field
study in the City of Trier. The goal of the field study is to evaltlaeuser acceptance of
Grid2Vehicle (G2V) and Vehicle2Grid (V2G) technologies for electric vehicles.
Widespread deployment of electric vehicles poses great challenges for the sswtogy
e.g, due to high and unbalanced loads on electric power networks. Howevericelec
vehicles and renewable energies provide also great synergies [KTO5].el\&ftiic
vehicles the fluctuating generation of renewable energies can be buffesdinghof

the vehicles may be adapted to current production. Using V2G technology, fomill
instance be possible to provide energy from the vehicle batteries to theogrid
compensate for low production.

Using V2G and G2V technologies necessitates a distributed IT architecture with an
essential part in the vehicle itself. For instance the planning of theecpaogesses
should be based on current and expected energy production, the conditr@sehicle

(e.g. state of charge) and the settings by the driver [NS14]. The radfeires an on-
board computer with an interface through which the driver is ablepidt iparameters
such as needed range and time of departure. Furthermore, thisronebmputer must

plan and execute the charge processes. Both for planning as well as for axeficthe®
charge processes a direct communication with other hardware within the vehicle is
needed. For example to execute the charge process the system musahicatenwith

the battery management system. Additional requirements for theawd-bomputer in

the field study originate from the aim of evaluating end user acceptancaskmnce,

GPS coordinates of all trips were recorded.

Such a system includes parts with safety requirements. Althoadhrhtionality of the
prototype itself is not safety-relevant, the communication on the main vehiclausis
not be adversely influenced as this might violate safety goals of othtmsys
Moreover, communication within the vehicle often poses hard real-tinsraons. For
these reasons, it was decided to use an AUTOSAR operating system for allifrarts
safety or real-time requirements.

Other requirements could not be immediately addressed with AUTOSAR, fordastan
the need to provide a graphical user interface with touch controa a@dP/IP based
communication link via UMTS to the field study server and the gateway to thgyener
control center of Stadtwerke Trier and the charging infrastructureefbiney Linux was
chosen as base for these functions.

Regarding the interaction between the two worlds of applications (AUTOSAR and
Linux) the requirement was established to have a most flexible interface allawing
data communication with a high bandwidth and the invocation of servicessa®S
boundaries. Last but not least, the chosen approach should be scalable sysbémer
classes such as the combination of ADAS and IVI functionality as considetbd in
paper.

According to these requirements the prototype was realized as a Bybt&m with
AUTOSAR and Linux running on separate cores of the same micropooceghe
interaction between the system parts uses shared memory, thus aflowing required
flexible, high bandwidth interface.

3 Safety Challenges

The integration of IVI and ADAS functionality comes with challenges alongertiwan
one dimension. The focus of this paper is on the safetysistherefore other aspects are
largely ignored unless a clear relation to functional safety exists.

Onre problem of integrating safety-related functionality on IVI hardwareashardware
of this class might not be adequately qualified for safety-relevant iSsuesutomotive
industry needs to monitor this issue and find suitable solutioiscléarly beyond the
scope of this paper to discuss this aspect further. However, the inteezsded might
have a look into a recent position paper related to this issue, that isfpan ongoing
discussion on the usage of consumer electronics components in autcepplications
[ZVEIL14].

Another issue with such hardware is that it is typically designed to allow fywod
average case performance and neglects the fact that worst case perforroantmast
importance for real-time systems. Typically this makes the precésicfion of worst
case execution and reaction times of software on these systenmedxthard [@I10].
Although several special aspects regarding real-time behavior aresdidciinroughout
this paper, in-depth considerations of WCET analysis or schedulabilitysenate out
of the scope.

3.1 Observations on the | SO 26262

Part 9 of the ISO 26262 norm [ISO11] discusses ,.criteria for the co-existence of
element”. The considered cases are ,,coexistence within the same element of safety-
related sub-elements with elements that have no ASIL assignedafetylrelated sub-
elements that have different ASILs assigned®. Clearly this includes the case of IVI and

ADAS software running on the same hardware. The norm prescribeslthsab-
elements need to be developed to the highest ASIL level unless freedom from
interference can be shown. As no Linux implementations are available thaieca
considered to satisfy ASIL A or higher, it is mandatory to show &eedrom
interference whenever 1ISO 26262 applies to such a combination.

The key term “freedom from interference” is often used in the context of combining
safety-related and non-safety-related functionalities (or regarding comhinafio
functionalities with different requirement classes on safety, e.g. ASThere are
sometimesnisconceptions about this term. First of all ,,freedom from interference* does
not mean that there is (or has to be) no influence between ediffelasses of
functionality. A sensible understanding could be that no undesired influgti®wed
to be established. At least one would expect that harmful influence caooat o
Surprisingly the definition used in the ISO 26262 norm is weakerttian

Part 1 of the norm [ISOI11] defines ,freedom from interference” as: ,absence of
cascading failures between two or more elements that could lead to the wiofato
safety requirement”. Cascading failures are defined as follows according to the ISO
26262: ,failure of an element of an item causing another element or elements of the
same item to fail“ (cf. [ISO11], part 1). An example of a cascading failure would be, if
one application crashes and thereby corrupts data needed by another appticatiay
that the latter also crashes. A difficulty arising from this definition is thatljt captures
situations where first one element fails and then one or more furtheerateaiso fail
due to this first failure (failure: ,termination of the ability of an element to perform a
function as required”, cf. [ISO11], part 1).2

Consider the following example, Linux (or any other software el®mstarts and
performs all functions as required. Additionally it writes into the menaoea used by
AUTOSAR (or of any other safety-related software element). In a strisesthis would
still be understood as ,,freedom from interference” according to the definition cited
above. Certainly, it cannot be meant that way, because the affectedneléng.
AUTOSAR) could fail in an arbitrary way due to a fault in the causing elgnhem
without the causing element failing by itself. We suggest that the defimfitnreedom
from interference should also include this case of error propagatiooniintde used in
the then stronger way of understanding. In the remainder op#pisr we use freedom
from interference in the stronger sense, i.e. including freedom érror propagation
with subsequent failure. Please note, that unless expressed otherwise thelagymino
established in [AviO4] is used throughout this paper.

2 The norm clearly distinguishes betwegault” and“failure” as in [Avi04]. Cascading failures according to
the norm require one component to fail, it is not ehdiog the component to cause a fault.

In other parts the norm refers to another type of failures withoitance for the
considered case of integrating IVl and ADAS functionality: common caikeds. A
common cause failure has a single root cause and affects two @parts of a system,
e.g. the AUTOSAR and the Linux part. The co-location of AUTOSAR andx.dmuthe
same hardware clearly increases the potential for common cause failures. Patential r
causes can be faults of the shared parts of the hardware, i.st alraoything except for
the processor cores. Moreover, the software responsible for bootingstieenscould
become a common cause for a failing start-up of both AUTOSAR and limthe
current system design. The section on implementation gives detadsdireg the
currently used boot sequence.

3.2 Relation between Safety and Security

For the considered combination of IVI and ADAS functionality on theeshardware it

is not sufficient to focus ononmalicious faults, i.e. ignoring the potential actions of
humans with the aim of causing harm. This includes the casgrofiérs on the Linux
part of the system. Many solutions that are sufficient without makciactions are
rendered ineffective when human intruders need to be considered. Riasthat the
current system relies on standard solutions to achieve security und&r Tinis is not
considered to be sufficient by the authors for the combination of IWVIAEMAS systems.
However, it is beyond the scope of the paper to discuss potential impmotgeim detail.

4 Current I mplementation

The current prototype was previously presented in [NS13]. This sectiomowilpresent

a more detailed overview of how separation was achieved and which isBuesnain
open. The prototype was implemented on a Pandaboard ES (Revisiomh®).
Pandaboard ES is an embedded development platform using the OMABGIBO
[TI14]. The OMAP4460 is based on the ARM architecture and comprise€ostex-

A9 cores, two Cortex-M3 cores as well as some other specialized cores fa& imag
processing, face detection etc. For the prototype only the two Ch®teoores were
used.

In addition to the Pandaboard, several paesighhardware was added. To communicate
with other ECUs, an MCP2515 CAN controller was connected via SPl.até the
location of the vehicle a GPS module was added, which is connected via UARIT. Bo
the GPS as well as the CAN module are controlled by AUTOSAR. For the user interface
a display was connected over HDMI. This display is combined with & toadule,
which is connected over USB. Finally, for communication a USB UMTS stick was used

4.1 Boot Sequence

During startup of a OMAP4460 the Cortex-A9 Core0 is initialized first by the ROM
code. The ROM code fetches the boot code from non-volatile storage atsl star
executing it. The system uses Das U-Boot [Del2] as a boot-loader to lodT@GAR

conforming operating system from non-volatile storage. This AUTOSARGge
currently also includes a complete Linux kernel statically linked in a sepatensof

the executable. The additional space used up by the Linux kernel thith®UTOSAR

image increases the load time from the non-volatile storage medium. We added
additional startdp code which configures and starts the other core. On the secoral core
short startdp routine is used to load the Linux image contained in the AUTOSAgém

and transfer control to the Linux image. All stap-parameters needed by Linux are
provided by the corel staup routine and are written to the correct locations in memory.
These parameters also include #texCPUs=1 option, which instructs the Linux kernel

to run in single core mode.

There are some possibilities to further reduce the statithes of AUTOSAR that were

not currently taken. First, the load time of the AUTOSAR image with the addect Lin
image could be improved by adding a driver for the non-volatileagéoand loading
Linux on the second core. In this case, the load time for AUTO®ARId only be
increased because of the added size due to the driver. Furthermore, Dag U-Boo
initialized several hardware modules that are not used by AUTOSAR, such as for
example USB. Some of these hardware modules are later used without ferther
initialization from within Linux, so that the initialization routines witidas U-Boot
could not be removed. However, these initialization routines could be moved to the
second core, so that the staptof AUTOSAR is not delayed further by these hardware
initializations. This additional initialization code could also be read from non-volatile
storage on the second core, as not to increase the size of the AUTOSAR image.

4.2 Hardwar e Assignment

To reduce the possibility for interference between safety levels dndware was
assigned statically to one of the two cores, if possible. For shared hardivamas
necessary to protect all configurations made by AUTOSAR from changesgjthkanux
and vice versa. Therefore, shared hardware was either initialized by thedutsr prior
to starting AUTOSAR (e.g. main memory, interconnects) or the caatign routines in
Linux were disabled or protected. Protection was implemented usingatitevare
locking mechanism provided by the OMAP4460 architecture [TI14]. Thdwaae
assignment is shown in Table 1.

Hardware Assigned to

Screen Linux

Touch-pad Linux

UMTS module Linux

USB subsystem Linux

Non-volatile memory (SD-Card) Linux

Main Memory (DRAM) Linux’/ AUTOSAR (configured by
u-boot)

L1 Caches One per Core (only activated i
Linux)

L2 Cache Linux

L3 OCM RAM (SRAM) AUTOSAR

CAN module AUTOSAR

SPl interface AUTOSAR

UART interface AUTOSAR

L3 and L4 interconnects Linux’/AUTOSAR (configured by
u-boot)

Interrupt Distributor Linux/AUTOAR (protected usinc
HW spinlocks)

Interrupt CPU Interfaces One per OS

Hardware spinlocks Linux’/AUTOSAR (configured by
AUTOSAR)

Clock Tree Linux/AUTOSAR (configured by

u-boot and managed by Linux)
Table 1: Hardware Assignment (taken with additions from [N)513

4.3 Memory

The used platform provides several types of memory, which wsed: iNon-volatile
memory (SD-Card), 1GB of DRAM, 1Mb L2 cache shared between corneB,l3Rdata
cache per core, 32kB L1 instruction cache per core and 56kB SRAM. Theotsadile
RAM was fully assigned to and managed by Linux.

Within DRAM a special area was reserved for AUTOSAR. The physical address rang
used for this area was reserved within Linux usingrthe= kernel command line
parameter. Using this parameter the reserved range is by default exfriochedny
mappings in the MMU. However, additional mappings to this memory regiorbea
added manually within the kernel. Furthermore, this memory reaacbessed using the
/dev/mem device node with root privileges. Therefore, the AUTOSAR memory
region was protected from unintended accesses using the MMU. Securigywltwn
Linux that provide elevated privileges or access to kernel space mayestibused to
tamper with the AUTOSAR memory region. The reserved memory régiatso used
for communication facilities. For this a part of the memory region is sdfipm a
kernel module as 10 memory. This shared memory can be use@lenmiant the data
structures necessary for communication. For AUTOSAR the reserved secttha of
DRAM was used for code and global data.

To ensure predictability the MMU was deactivated by AUTOSAR for its own care. B
deactivating the MMU, unpredictable delays from unexpected TLB refills weridexl
[Sch12b]. Also, for OMAP4460 SOCs disabling the MMU also disables ellesafw
memory used by that core. This way interferences between LmdiABTOSAR from
sharing the L2 cache and cache coherency protocols are avoided. Halisaldimg the
caches also greatly reduces the performance of the system. As &[fifst siitigate this
problem, the SRAM section was completely assigned to AUTOSAR and disabled in
Linux. In our final implementation, all stacks were moved to the SRANhd¢rease

speed. While this method provides some speed improvements, futwléications can
further improve the usage of SRAM for speedup. Also insteastatically assigning
parts of the system to SRAM it may be possible to use the SRAM estghpad
memory managed by the OS or the compiler [ABS01]. Furthermogeddm from
interference only requires disabling the shared L2 cache. Dependthg architecture,
it may be possible to only enable the unshared L1 cache [ARM11a].nikssithe

SRAM section to AUTOSAR, as in the current implementation, requireshib8RAM

is not used by Linux. Currently SRAM may be accessed witlmix_using a kernel
module. To test if the memory could be safely assigned, this modsléngtaumented
with log outputs. These outputs showed that SRAM was not used hintheportion.

The current solution leaves two main issues. First, using¢he parameter the address
space of AUTOSAR is excluded from the memory mapping used hyLldowever,
there is no restriction within Linux preventing it from changihig tmemory mapping.
Erroneous code within the kernel or with root privileges could ircypda still map any
part of the AUTOSAR address space, hence impairing safety requirerfentshis
reason all parts of the user interface were run without root myeslaéf possible.
Secondly, disabling the caches within AUTOSAR will greatly decreassptted. While
assigning the SRAM to AUTOSAR may mitigate this problem somewhat, this o
partially solves the issues. A better solution would be to enable L1 cachesygéotzhll
also analyze for which portions of the code or data the L2 caches coatlilaged as
well.

4.4 Interrupts

The OMAP4460 SOC uses an ARM generic interrupt controller (GIC) [ARM1d.b]
configure and deliver interrupts to the cores. The GIC is composed pfjle shared

interrupt distributor and one CPU interface per core. The interrupt distribeceives

interrupt signals and distributes them to the CPU interfaces failihg by the core.

Interrupt signals can be distributed to one or more cores [ARM11b].

In the current state of the system, interrupts are statically assigned to tree tofo
cores. During startjp AUTOSAR configures all interrupt signals required by itself to be
targeted to the core on which it is running. The initialization routine foGli@ within
Linux has been changed not to reassign any interrupts targeteé JAUTFOSAR core.
Additional care has been taken to avoid race conditions. For the ARM Glydkd
OMAP4460 architecture interrupt targets are configured by using memapped
registers. For these registers one processor word is used to niamdgegets for four
different interrupts. In Linux the mapped words are written usimgad-modify-write
pattern. To avoid races with AUTOSAR these registers are protected using ackfw lo

% For the version of the system presented in [NS13] &l glartions were put into SRAM. Later changes to the
system however caused the bss section to grow beyond 56kBt$bis section was removed from SRAM.

* The ARM GIC specification [ARM11b] indicates that skeeregisters are also byte accessible. However the
Linux kernel currently does not use this method to setattgets, so that races are possible if both AUTOSAR
and Linux try to modify the same register and no adutiitocking is used.

If it can be guaranteed that all interrupts are completely initialized within AUTOSAR
prior to starting Linux these locks are not needed. In that case, ds@abe guaranteed
that the shared hardware does not introduce any additional delays. $jnmi@ntrupt
priorities are managed by using one word to store the priorities of different
interrupts. Again, these registers must be protected using HW locks dietreeen
AUTOSAR and Linux or it must be ensured that all priorities are seAlBJyOSAR
prior to loading Linux and anect changed while the system is running.

Masking interrupts can be done in multiple ways using the ARM ligst, all
interrupts can be disabled for a single core using-theid instruction. Second, some
portion of the interrupts can be masked for a single core usiogty masking in the
CPU interface for that core. Third, single interrupts can be globasked using the
distributor. Currently within the used AUTOSAR implementation interrupts ahg o
disabled via thecpsid instruction. No masking of single interrupts or groups of
interrupts is done. However, these functionalities could easily be Mseding based
on interrupt priorities can be done using the CPU interface, so thharedshardware is
needed. Also, the registers of the distributor for masking/unntasifisingle interrupts
are implemented race-free by using separate set and clear registermeginis no
additional locks are needed for performing masking of interrupts indepéy on both
systems.

Using the current solution there is no guarantee that Linux will not datetany
interrupts targeted towards AUTOSAR either by masking them or by seitiother
target core. However like any hardware, the GIC registers are protected withinbyin
the MMU. The code which maps these registers to configure the GIC ismallyasd
could be easily verified. If this code is instrumented so that it will al@nge any
interrupts targeted towards AUTOSAR it would be possible to ensure that ittiés o
the Linux kernel does not cause any failures of safety-related funcTibiss.however,
still leaves the possibilities of other parts of the Linux kernel mapping tGeré€gjisters
and changing the configuration of the interrupts. This could dithelone by an attacker
or because of severe bugs in the Kernel. One possibility to mitigatissbes would be
to secure any access to the MMU, so that no additional mappings to the@d@rs
can be introduced.

4.5 | nterconnects

The OMAP 4460 SOC uses several types of interconnects for commumibativeen
hardware components. Both Cortex-A9 cores are connected to most o@éaB8vare
by a local interconnect. This local interconnect further connects to the L8oimterct
and the L4_ABE interconnect. The L4_ABE interconnect serves hardwaiah iwlpart
of the audio backend. Other hardware, which is used (UART, SPI, somes}iis
served by the L4 PER interconnect, which in turn is connected to3thietdrconnect
[T114].

Since the system only provides a single set of interconnects for doo#ls, these
interconnects have to be shared between Linux and AUTOSAR. This alss,nieat

requests to configure or service hardware from Linux may delayesexjurom
AUTOSAR. The L3 interconnect uses a leaky bucket algorithm [Tu86] fodviadth
regulation [TI14]. Using this algorithm the bandwidth for each master the
interconnect is limited and data can be processed at a higher priotinpgaas the
maximum configured bandwidth is not exceeded. However, since both cordwin t
Cortex-A9 dual processor are connected to the L3 interconnect tmingame local
processor interconnect, the bandwidth for both cores can only bege#ten Still, this
method may be used to protect accesses to safety relevant hardwheepbycessor, to
guarantee freedom from interference from other hardware.

Memory is connected directly to the cache and memory controllers, wieigragrof the
dual core Cortex-A9 subsytem [T114]. Thus, memory read rite vaccesses from the
core that is running AUTOSAR only need to be arbitrated with other nyeataesses.
No arbitration is needed for accesses to memory and accesses to otharddiram
Linux.

Currently AUTOSAR also uses two timers, which are connected ubmd.3 and
L4 _PER interconnects. These timers are used for system ticks andttiraethe UART
module. In case of heavy congestion on one of the two interconmeciguration
updates to these timers could be delayed. As a possible solution timensanehpart of
the ABE module could also be used. These timers are fully accessibl¢hzddortex-
A9 cores using the L4_ABE interconnect only. If these timers are arsgédhe ABE is
disabled within Linux, no congestion can appear on the L4_ABE intaext.

As discussed congestion may be an issue, which can influencemeab&havior.
However, most important hardware, e.g. memory, is connected sepaoatbby cores
thus limiting the potential effects. Furthermore, depending on thebwiee it may be
possible to use reserved interconnects to avoid any congestion. Fgplexian case of
the OMAP4460 SOC timers within the ABE backend could be used JJTW¥Hile this

may require deactivating some part of the hardware, this may bg egsddceable for
example using a soundcard connected via USB.

4.6 Clock-Tree and Power M anagement

Currently clock-tree and power management are performed by Lirhe.complete
clock-tree is initialized during stadp by U-boot and later managed by Linux.
Experiments on the hardware platform showed a risk of overheduimgg full load, if
the speed is not throttled. If code on the Linux side can cause thedsfal due to
overheating, this could also severely impact safety-related functitemse, a thermal
management is needed for reliability. This thermal managementrentdymprovided by
the Linux kernel. Unfortunately, the CPU speed can only be sébth cores together
so that Linux will also control the speed of AUTOSAR. To ensure that all deadii®
met, timing analysis on AUTOSAR was done at the lowest possibleHaveever, the
uncontrolled change of clock speed can cause serious problems iimeeaeftware,
even if scheduling and timing anomalies could be avoided. Therefereofitrol of the
clock speed should be given to the safety-related real-time pad\UBOSAR in the
case of combining IVl and ADAS functionality. Moreovilie current implementation

limits the processing capacity that can be used for safety-relatetibfus to the capacity
provided by the chip at the lowest frequency. A closer analysishviifequencies do not
cause thermal issues could also allow running the system at a highetr Isptbat case
all lower frequencies should be disabled within Linux.

It would be possible to implement the thermal management within AUTOSWR.

such an implementation, either power management could be done by AUTOSAR
independently without regards for Linux. If the Linux progracas run at arbitrary
speed, this is the simplest solution. On the other hand, it would gtitidsgble to use the
normal power management infrastructure within Linux and forwaeddttision of the
installed CPUfreq governor to AUTOSAR. AUTOSAR could then use thiktiadal
information to provide the needed CPU speed to Linux.

Power management is a severe issue for any system using multipdirapsystems.
Throttling the CPUis only possible in cooperation with both systems. Instead of
throttling the usual solution is to temporarily completely halt coresnwheassible
[Chi08]. This method is also employed by the current prototypsth Rinux and
AUTOSAR perform awfi instruction in their idle tasks, which reduces the power
consumption of the current core. Still thermal issues may require roptesscated
solutions to the problem of power management. Without any themmaamlagement
depending on the hardware an additional point of failure or attack wouddmed. For
example, an attacker could just run a program which burns CPUsctlules increasing
the heat, which may lead to a failure of both cores. Such an att@tk also be run
without any elevated privileges. Similarly, faulty code could also burd Grles and
increase the heat on the die. This means that any solution in whfety-related
functions are combined with non-safety-related ones on the same hanchgaires a
thermal management which can be verified not to lead to any failunesalBo applies

to solutions in which there is a partitioning hypervisor.

4.7 Communication

To share data between AUTOSAR and Linux real-time communication feciitie
added. For stream transmissions a non-blocking ring buffer imepiation was used.
Multiple ring buffers are provided for multiple data streams. Using thagebuffers
AUTOSAR tasks can send data packets to Linux, which are then receiveceined k
thread (bouncer thread). This kernel thread takes the packet andittpiadookaside
cache, which is created using thenem cache create() method [CKRO5].
Lookaside caches are frequently used within Linux to flush ufised by hardware,
e.g. network cards, to internal kernel buffers. khem cache create () provides
a pool allocator for blocks of fixed size. Blocks which are freed ardirectly returned
to the free memory managed by the kernel, but rather to the paplifie re-use. Pools
for blocks of equal size can be shared. The bouncer thread is lscthedery 100ms and
removes all packets from the ring buffer to the lookaside cache so ¢hanhghbuffer
itself remains usable from within AUTOSAR, even if the packets arpiokéd up by a
user-space process. All packets are stored in a linked list, which catrieeed using a
device node. In AUTOSAR multiple tasks sending data simultaneouslygtintbe same

ring buffer must be synchronized with each other. For thisektime resource sharing
mechanisms within AUTOSAR are used, so that real time capabilities are noteidnpair
The structure of the communication facilities is presented in Figure 1.

Ring Buffer

(Channel 0)

Ring Buffer
(Channel 1)
. Bouncer Lookaside . Userspace
AUTOSAR SWC Linux_comm cee Device Node
- Thread Cache Process

Ring Buffer

(Channel N)

Figure 1: The structure of the communication facilities from AUTGSé\ Linux

In case the lookaside cache grows beyond a configurable limit, tieerfyyackets are
retrieved from the ring buffers by the bouncer thread. In thée ti@e ring buffers may
overflow if further packets are written on the AUTOSAR side. Similarlyhéf kernel
bouncer thread is not regularly scheduled, this may also cangestmn in one of the
ring buffers. If a ring buffer overflows the packet is droppedthiw AUTOSAR to
enforce the non-blocking behavior. This may result in loss of dataenside of Linux,
but not in any missed deadlines on the AUTOSAR side. As Linux is pposad to
perform any safety relevant functions, the missed data does not ingawdfall safety
of the system.

To ensure no delays during communication from caches or cackesnok protocols,
caching for the shared memory areas is disabled in Linux. Caoheteactivated by
mapping the memory area as 10 memory within the kernel. No cactassed within
AUTOSAR. To keep the pointers indicating begin and end of the ringrbedhsistent,
data is first written to the buffer within AUTOSAR, then a memiance is issued and
after the fence the pointer is updated. Similarly in Linux first the idataad and then
after a memory fence the pointer is updated.

Although this ring buffer mechanism is only used to send data #JTOSAR to

Linux, the opposite direction could be supported as easily. As a sagond
communication mechanism for state data (as opposed to stream data), atomic writes to
reserved memory words are used. This communication mechanismeistiyuonly used

to communicate data from Linux to AUTOSAR.

While the current communication structure could still be improved,ef@mple to
decrease the risk of lost data, it does not pose any risks to safetg-fatattons. If any
of the buffers overflow data may be lost. However, since this datcéepted by Linux,
this transmission must not be part of any safety-related functiangafy, the data that
is received from Linux must be treated as unreliable by all safety-relatetiofs.

Hence, even if the communication mechanism misbehaves in anyhsasafety-related
functions cannot be impaired in any way.

5 Competing Solutions

The usual solution to ensure freedom from interference is to uaseaseardware for
safety-related and non-safety-related functions. However, separagndhafdware
increases the cost of the system. Also, separating the hardwaressegqditional
communication facilities such as dedicated busses. Moreover, the required flexible a
high bandwidth communication channel is not available in such a séftirlgimpedes
innovations that utilize a close coupling of IVI and ADAS functionality.

Another possibility is to develop the complete system according to the higBds.
However, this requires extensive verification and testing of non-sadfetied functions
which may not be feasible. This would also have to encompass thaleteninux
kernel, if a Linux portion is used. While some soft real-time adapttid the Linux
kernel exists [RHO7] these have not been developed according to ISO @62 é2nce
cannot be employed for safety-related functions. Using different opemstitgms than
Linux typically prevents short development cycles and increases develomaent ¢

A third possibility is to use a hypervisor to virtualize the two systdiSMO09].
However, the additional software layer will have an impact on performance
[Brul0,Schl2a] that may not be acceptable in all cases. Also, ta hgpervisor for
partitioning of safety-related and non-safety-related functions,rieéessary to verify
the hypervisor at the level required by the safety-related functiorthelrmore, it must

be possible to guarantee that the scheduling of the hypervisor came eaalitime
performance for the safety-related system parts. This may donge require additional
idle time allocated to the real time portions. This further reduces tlssibjm
performance.

References

[ABS01] Avissar, O.; Barua, R Stewarf D.: Heterogeneous memory management for
embedded systems. In Proceedings of the 2001 internationalresuode on
Compilers, architecture, and synthesis for embedded systems. ACM, 2001.

[ARM11a] Cortex-A Series - Programe Guide. Version 2. ARM, 2011.

[ARM11b] ARM Generic Interrupt Controlle Architecture Specification. Architecture
Version 2. ARM, 2011.

[AviO4] Avizienis, A.; Laprie, J. C.; Randell, B.; Landwehr, C.: Basic cpitxeand
taxonomy of dependable and secure computilmg. I[EEE Transactions on
Dependable and Secure Computing, 2004, 1, 11-33.

[Brul0] Bruns, F.; Traboulsi, S, Szczesny,D.; Gonzalez,E.; Xu, Y.; Bilgic, A.: An
evaluation of microkernel-based virtualization for embeddedtimal systems. In
22rd Euromicro Conference on Real-Time Systems (ECRTS), 2010.

[Chi08] Chisnall, D.: The Definitive Guide to the XEN Hypervisor. Pientilall, 2008.

[CKRO5] Corbet, J.; Kroah-Hartman, G.; Rubini, A.: Linux Device Driveng Bdition.
O'Reilly, 2005.

[Cul10] Cullmann, C.; Ferdinand, C.; Gebhard, G.; Grund, D.; Maiza,R€ineke, J.;

Triquet, B.; Wilhelm, R: Predictability considerations in the desifymaolti-core
embedded systemi Proceedings of Embedded Real Time Software and Systems
(2010): 36-42.

[Del2]

[ISMO09]

[1SO11]

[KTO5]

[NS13]

[NS14]

[RHO7]

[Schi2a]

[Schi12b]
[TI14]
[Tus6]

[ZVEI14]

Denk W: Das U-Boot. 2012. url: http://git.denx.de/cgi- bin/gitweb.cgi?p=u
boot.git;a=summary.

Igbal, A.; Sadeque, NMutia, R. I.: An overview of microkernel, hypervisor and
microvisor virtualization approaches for embedded systems. Report, Depadi
Electrical and Information Technology, Lund University, Sweder0Z2009).

Road vehicles- Functional safety. 1ISO 26262, First Edition. International
Organization for Standardization, 2011.

Kempton, W.;Tomi¢, J.: Vehicleto-grid power implementation: From stabilizing
the grid to supporting large-scale renewable energy. In Journal ofr Boweces,
vol. 144, no. 1, pp. 28@94, 2005.

Nett, T.; Schneider, J.: Running Linux and AUTOSAR $igeside.In 7th Junior
Researcher Workshop on Real-Time Computing, pp. 29-32, Sdyttigolis,
France, 2013.

Nett, T.; Schneider, J.: Automated Planning of Charge &sesefor Privately
Owned Electric Vehicledn 3rd International Conference on Connected Vehicles &
Expo (ICCVE), 2014.

Rostedt, S.; v. Hart, D.: Internals of the RT Patch. In Proceedintiee Ottawa
Linux Symposium. Vol. Two. Ottawa, Canada, 2007, pp-181.

Schneider, J.: Overcoming the Interoperability Barrier in M#itality
Systems. In Proceedings of the 19th ISPE International Confeoen€encurrent
Engineering- CE, 2012

Schneider, J.: Why current Memory Management Unis reot suited for
Automotive ECUs.In Proceedings of the Automotive Safety & Secua@12.
OMAP4460 Multimedia Device Silicon Revision 1.x. Technical Refiee Manual.
Version AB. Texas Instruments, 2011 (revised 2014).

Turner, J.: New directions in communications (or which way ¢oitifiormation
age?)In IEEE Communications Magazine, Volume 24, Issue 10, 1986

Position Paper: Consumer Components in Safe Automéipications. German
Electrical and Electronic Manufacturers’ Association (ZVEI e.V.), July 2014,
http://www.zvei.org/Publikationen/Position-paper-Consumer-Semi
Automotive.pdf.

