
Concurrent Engineering Approaches for Sustainable
Product Development in a Multi-Disciplinary Environment,
DOI: 10.1007/978-1-4471-4426-7_92, � Springer-Verlag London 2013

1093

Overcoming the Interoperability Barrier in
Mixed-Criticality Systems

Jörn Schneider1

Abstract Concurrent engineering of system parts with diverging requirements
can be extremely challenging. One example are mixed-criticality systems that in-
tegrate hard real-time software for safety-critical functionality and general purpose
software providing a sophisticated user interface. The automotive industry, as well
as other industrial branches, has a growing need to integrate consumer electronics
applications (e.g. Linux based) and safety-relevant applications requiring an un-
derlying hard real-time operating system. Some established concepts for mixed-
criticality systems can be found in the avionics domain. This paper demonstrates
that the principles behind these concepts are a dead end regarding innovations re-
quiring a close interoperation. The second contribution of the paper is to present a
different solution approach as a potential remedy that allows the different devel-
oper groups (hard real-time and standard IT) to retain their attitude to software de-
velopment. The core of the novel approach is a worst-case execution time
(WCET) directed OS service, which could serve as solution pattern for further
problems in mixed-criticality systems.

Keywords

Mixed-Criticality; Cyper-Physical Systems; Real-Time; Interoperability; Worst-Case
Execution Time; Integration; Virtualization; AUTOSAR; Linux

1 Introduction

Industry has a growing demand for integrating applications with diverging real-
time and criticality requirements on the same microcontroller. Among these future
mixed-criticality systems is a class of applications for which uniprocessor solu-
tions are sufficient, but which are implemented on separate processors in current

1 J. Schneider ()
Trier University of Applied Sciences, Dept. of Computer Science, Schneidershof, 54293
Trier, Germany
e-mail: j.schneider@fh-trier.de

J. Stjepandić et al. (eds.),

products. A driving force for mixed-criticality systems is the need to achieve a
much closer coupling between applications of different criticality to allow for fur-
ther innovations. Up to now the increased demand for interoperability is usually
satisfied by transferring messages in a distributed system. However, the costs for
providing one hardware platform per functionality are no longer acceptable2. This
work focusses on the question how resources, e.g. peripheral devices or memory
areas can be safely and efficiently shared in future systems.

Examples of mixed-criticality systems are especially known from avionics in-
dustry where the approach referred to as Integrated Modular Avionics (IMA) and
the underlying ARINC-653 standard [1] particularly targets this type of applica-
tions.

Another area where mixed-criticality systems will evolve further is the automo-
tive industry, and the proposed approach especially targets this area. In-car elec-
tronic control units like instrument clusters and head units need to provide non, or
soft real-time behavior for displaying information or audio and video streaming. In
addition they have to work in the firm real-time communication of the car and
must direct to the driver whatever mission or safety critical messages they receive.
Traditionally, these systems have a dedicated microcontroller to handle the in-car
communication. Eliminating this extra hardware promises reduced costs and new
functionality by a tighter coupling of the classic automotive domain with in-
vehicle infotainment applications, e.g. to provide new classes of driver assistance
systems. For these cases it is of special interest to run Linux based software to-
gether with AUTOSAR [2] applications on one CPU. Ambitious activities like the
GENIVI Alliance [3] demonstrate the importance of an increased interoperability
for industry.

The basic conflict each development team faces when building mixed-
criticality systems is independent of the industrial application domain. Integrating
applications on top of the same platform requires the art of limiting the mutual in-
fluence while interacting and sharing resources. The situation is exacerbated by
having different levels of criticality and development teams with different back-
grounds. Developers of consumer electronics applications usually do not know
how to develop hard real-time systems and specialist for safety-critical or real-
time systems typically have to use quite different approaches than standard IT de-
velopers.

In mixed-criticality systems it is necessary to separate applications with differ-
ent levels of criticality such that they cannot affect each other in a more than ac-
ceptable degree. Therefore, applications are usually assigned to partitions that
limit their influence sphere. Different partitions are usually protected against each
other in mixed-criticality system by separating them regarding space, i.e. memory,
and regarding timing. As this paper concentrates on the real-time aspects, the im-
portant issues to control are:

2 Consider the automotive industry for example, where a luxury car might have up to 100

electronic control units.

1094 J. Schneider

 At which points in time is a given partition allowed to obtain a shared re-
source?

 For which amount of time is a partition able to block out other partitions from
accessing a particular resource?

Usually there are no dedicated mechanisms to control these issues in soft or
non real-time systems. For hard real-time systems well-known approaches are
available such as the priority ceiling protocol (PCP) by Sha, Rajkumar, and Le-
hoczky [4], and the Stack Resource Policy (SRP) by Baker [5]. However, these
mechanisms are not suited to be used across partitions of mixed-criticality sys-
tems, as this would require one common OS for all involved application types.

The question that arises here is: How can resource sharing in mixed-criticality
systems work without intolerable temporal influence? In Section 2 we will see that
the way existing approaches achieve this is by introducing one or more levels of
indirection, such that one dedicated partition actually accesses the shared resource
alone and serves the usage requests of the other partitions.

A disadvantage of this approach is that the usual way devices are accessed is no
longer working for partitions that are fenced off from the actual resource. As a
consequence the combination of off-the-shelf applications (including device driv-
ers and general purpose operating systems such as Linux) with hard real-time ap-
plications to mixed-criticality systems requires tedious redesigns, leads to redun-
dant system structures, a larger code base, and therefore adds costs, complexity,
and faults. The approach presented in this paper allows for immediate sharing of
resources between a hard real-time and a soft/non real-time partition, while still
limiting the temporal influence reliably.

2 Current Approaches

This section describes the technological concept of current mixed-criticality sys-
tems regarding time partitioning, where the description focusses on ARINC-653
based approaches [1, 6, 7]. The three issues to consider here are time partitioning
regarding processor time, communication, and shared devices.

Each set of applications exhibiting the same criticality level, is confined into a
partition. The goal of this confinement regarding the temporal behavior is to pre-
vent that any partition gets more time with a resource than its allowed share.

Fig. 1 Scheduling of partitions in current mixed-criticality systems

Overcoming the Interoperability Barrier in Mixed-Criticality Systems 1095

Fig. 2 Temporal effects regarding device accesses in current systems

Processor3 Current mixed-criticality systems usually come with a static schedule
of processor time slots for partitions as shown in Figure 1. A periodically repeated
major time frame is divided between partitions such that each partition receives at
least one time slot per major time frame.

To guarantee that no partition receives more processor time than allowed it is
sufficient to ensure that no partition can overdraw its time slots. Apart from this it
is necessary to find a static schedule that fulfills all real-time requirements of any
involved partition. Each partition usually executes its own operating system. The
underlying time slot scheduling, is under control of a separate operating system,
which is referred to as partition manager throughout the paper. When referring to
the partition private operating system, the term guest operating system is used.

Communication Inter-partition communication in current mixed-criticality sys-
tems is usually limited to message transfers. Whenever a partition needs to com-
municate with another partition, the relevant parameters (e.g. message length, and
frequency of communication) have to be statically configured. The partition man-
ager copies the data to be communicated when switching between partitions. For
instance, messages produced by a partition might be copied only at the end of the
major time frame and are afterwards available for any receiving partition.

Regarding communication the confinement goal is achieved by preallocating
sufficient time to transmit messages outside of the application partitions time slots.
As the maximum amount of data and thereby the time needed to transfer messages
between the separated memory spaces of partitions is limited, no partition can re-
ceive more communication time than planned. The communication schedule and
therefore also the processor schedule have to be constructed to satisfy the real-
time communication requirements of all involved partitions. A drawback of mes-
sage based communication is that it imposes a cumbersome programming style
and less resource efficient code.

Devices Devices are typically not immediately shared in current mixed-criticality
systems. Instead any device that is needed by more than one partition is assigned
to a so-called system partition which serves any usage request of application parti-
tions [6, 7]. The usage requests are transferred via message transmission across the

3 Note that single processor mixed-criticality systems are considered in this paper.

1096 J. Schneider

usual communication channel. When using this approach to integrate previously
separated systems on the same processor, it enforces message based communica-
tion within formerly coherent communication chains from application code to
physical devices. As shown below, this is the root of many problems.

Handling device accesses on behalf of low criticality application partitions pro-
longs the time slots of system partitions as shown in Figure 2. However, as the
maximum length of messages and the communication frequency are statically
known, the time of using a device on behalf of a partition is bound. That means
that the confinement goal to limit the device usage time for each partition to its al-
lowed share, can be achieved. Nevertheless, further problems arise with this con-
cept.

Consider a low criticality non real-time application with a device access beha-
vior as shown in Listing 1.

Listing 1 Possible device accesses of a low criticality application

while true // Do this forever
read from device X
compute values
write to device Y

If this application has to be incorporated in a mixed-criticality system with

shared devices, all device accesses have to be rerouted to a system partition via
message transmission. In case of a synchronous message passing mechanism the
considered application process would be blocked at each device access. Moreover,
together with the scheduling configuration of Figure 2 it would suffer from a delay
of at least two major time frames before being unblocked and the transmission la-
tency between process and device would be at least one major time frame. Note
that asynchronous message passing is no sensible option in this case, as the code
does not allow to utilize the time before the read access to the device is completed.

What happens to high criticality applications with hard real-time constraints in
systems that follow the message passing paradigm? Of course the real-time re-
quirements regarding the communication with devices and externally connected
components such as sensors and actuators impose even more constraints on the
static schedule to be found. For instance the latencies for sensor readings or actua-
tor positioning are determined by the scheduling of partitions.

The above described problems cause that the otherwise appealing concept of
system partitions and message based access to shared devices enforces major
changes to the device drivers and the application code, at least for low criticality
partitions. This is a painful disadvantage for industrial needs. The communication
path between devices and application code has to be redesigned. New device driv-
er layers are necessary that add no functionality but are just needed to communi-
cate with the system partitions that actually access the particular devices. Moreo-
ver the usual interrupt based device driver concept is no longer applicable. And as
the example of Listing 1 indicates, it is very likely that the application itself has to

Overcoming the Interoperability Barrier in Mixed-Criticality Systems 1097

be adjusted. Essentially the same issues arise if memory areas shall be shared, e.g.
to use or validate computation results from a different partition.

These drawbacks of the prevalent concept of device sharing in mixed-criticality
systems and the lack of memory sharing possibilities lead to the question: How
could a less indirect but still safe resource sharing scheme in mixed-criticality sys-
tems be realized? An answer to this question, for the restricted case of two parti-
tions, is given in the remaining sections of this paper.

3 System Model

The systems under consideration comprise a soft or non real-time part, a hard real-
time part and a common, underlying partition manager. The hard real-time part is
considered to have a higher level of criticality than the soft or non real-time appli-
cation. The complete software is assumed to run on a single processor.

For the sake of space, the abbreviations NRT and HRT are used throughout the
paper to name the soft or non real-time part, and the hard real-time part, respec-
tively. The NRT and HRT parts have their own OS. The partition manager switch-
es between the NRT and HRT part according to a static schedule to guarantee a
certain amount of computation time for both. Thus at any given point in time the
system is either in the NRT phase, the HRT phase, or from the partition manager
point of view in a transition between two phases.

The NRT OS can use any scheduling scheme, as long as it is possible to ensure
that a process cannot be preempted for a certain section of its code. For instance
the NRT OS could be an embedded Linux with the ability to run a process solitari-
ly in a high priority class.

The HRT OS can use any real-time scheduling scheme, e.g. rate monotonic, or
earliest deadline first. The scheduling objects of the HRT OS are called tasks
throughout the paper, to distinguish them from NRT OS scheduling objects, for
which the term processes is used.

4 Guidelines and Requirements

This section first presents a set of guidelines for the development of an improved
solution arising from industrial needs. Thereafter three concrete requirements on
the solution are derived.

1098 J. Schneider

4.1 Guidelines for improved solution

Immediate sharing It shall be possible to access shared resources directly from
the HRT and the NRT partition. This gives the freedom to avoid message based
communication and its drawbacks.

Consistent use A resource that is currently in use by the HRT or NRT partition
may be granted to the other partition only when it is safe to do so. This implies
that access to a shared resource cannot be allowed, if its state is inconsistent.

Preserve timing budgets The duration of time slots may never be overdrawn due
to ongoing resource accesses. This guarantees that each partition receives its pre-
configured amount of time. Note that this still allows that a resource is held for
more than one time slot.

Predictable duration of resource accesses An upper bound of the holding time
of a resource shall be computable from configuration information and the code
sections performing the actual access. Thus the worst case impact of resource
sharing can be considered at design time and essential temporal properties of the
system can be verified. For instance it is possible to check whether an NRT appli-
cation never suffers from starvation due to resource sharing.

Freedom from deadlocks The new approach should guarantee that no possibili-
ties for the occurrence of deadlocks are introduced. For the HRT application,
deadlocks would lead to deadline misses and for the NRT part there should at least
be no additional sources of potential deadlocks.

Zero impact on HRT application There shall be no influence on the timing be-
havior of the HRT application due to NRT resource accesses. This allows to verify
the real-time behavior of the HRT part without considering the NRT part. Espe-
cially, no changes of the NRT application can invalidate timing verification results
for the higher criticality application. Thereby, it becomes possible to get the HRT
system part certified, e.g. according to [8], without rendering the certification
invalid due to later changes of the NRT part.

Allow for oblivious development The developers of the NRT application should
not need to understand the details of the temporal behavior of the HRT application
in order to use shared resources. The same should hold the other way around for
the HRT programmers.

No guest OS changes The new concept shall work without significant changes to
the HRT or the NRT operating system. Especially the scheduling mechanisms
should not be changed. Thus the concept can be implemented without changing
the operating system code base and even if the operating system source code is not
available.

Overcoming the Interoperability Barrier in Mixed-Criticality Systems 1099

4.2 Requirements on solution mechanism

Basing on the described guidelines it is possible to derive a set of requirements on
a concrete solution mechanism. One can take the consistent and immediate access
to shared resources as starting point. Apparently, a mutual exclusion mechanism
between HRT tasks and NRT processes (or more precise between certain code
sections of them) would suit the problem. As the guest operating systems should
remain unchanged, this service should be placed within the partition manager and
for the sake of access time predictability there should be no interference by unin-
volved tasks or processes. Because the NRT part shall not influence the temporal
behavior of the HRT application, the blocking time for HRT tasks requesting this
service has to be zero.

Explicitly stated these requirements are:

R1: A mechanism for explicit mutual exclusion between HRT tasks and NRT
processes shall be provided by the partition manager without changes to the guest
operating systems.

R2: The mechanism shall prevent that the duration of critical sections is prolonged
by uninvolved tasks or processes.

R3: It shall be impossible for an HRT process to be blocked when it requests ex-
clusive access to a shared resource.

5 Solution Approach

The basic idea of the proposed solution is to incorporate a mechanism into the par-
tition manager that behaves like an ordinary mutex on the HRT side and grants
access to a free mutex for an NRT process only if it is guaranteed that the lock is
released before the current NRT time slot ends. As one can easily see, the latter
property is sufficient to satisfy Requirement R3, as far as blocking by NRT
processes is concerned.

To realize the idea, the partition manager has to provide a pair of API calls to
acquire and release a mutex of the new type. For convenience let us name it a
mixed-criticality lock, short MCL and the API calls GetMCL() and Relea-
seMCL(). In truth there are two version of the two API calls, one for usage in
NRT applications and one for the HRT side. As shown below, it is sensible to im-
pose some restrictions on the usage of these API calls.

1100 J. Schneider

5.1 Calling conventions

There are some conventions that need to be observed when using the MCL API
calls of the partition manager. This rules for using the MCL mechanism are given
as restrictions below. Thereafter, the rationales behind the restrictions are ex-
plained.

5.1.1 Restrictions

Restriction 1: No task or process may hold more than one MCL at a time (i.e.
nesting of MCLs is forbidden).

Restriction 2: No guest OS system calls that might cause rescheduling are allowed
in code sections embraced by GetMCL() and ReleaseMCL().

Restriction 3: No two scheduling objects of the same class (i.e. any two NRT
processes or any two HRT tasks, respectively) can use the same MCL unless any
accesses to the latter are protected by creating a native critical section around
them4.

5.1.2 Why are these restrictions needed?

Restriction 1 prevents that any task or process allocates more than one MCL at a
time. This is a straightforward way to prevent deadlocks that might otherwise be
caused by circular waiting on MCLs and serves to heed the freedom from dead-
locks guideline. Of course, this could be achieved by other means also. For in-
stance, restricting the allocation sequence of MCLs to a preconfigured order
would work as well. However, such an approach would end up in a more complex
algorithm and a less lean partition manager.

Restriction 2 limits the usage of system calls while an MCL is held. It disallows
system calls that could cause the guest operating system to pick a different sche-
duling object (task or process) to be executed. This helps to realize the guideline
of predictable resource access duration by contributing to the fulfillment of Re-
quirement R2. Moreover it reduces the worst case holding time of MCLs.

Restriction 3 limits the usage of the same MCL by scheduling objects of the
same guest operating system. Only if the MCL system calls are protected in a way
that prevents multiple attempts to receive the same MCL, two or more scheduling
objects of the same partition can utilize the same MCL. Thereby the partition
manager does not need to care about managing a list of unfulfilled requests for the
same MCL. Moreover, there is no point in reinventing the wheel, as the guest op-

4 A native critical section is a critical section protected by the usual mechanisms of the guest OS.

Overcoming the Interoperability Barrier in Mixed-Criticality Systems 1101

erating systems can be expected to provide mechanisms to guarantee mutual ex-
clusion between their native scheduling objects. A more severe reason is that in-
cluding special support to share MCLs among application code of the same guest
OS could lead to deadlocks in combination with native mechanisms, and on the
HRT side it might violate Requirement R3.

5.2 Algorithm of NRT API calls

The basic steps for acquiring an MCL in NRT processes are as follows:

GetMCL()

1. Raise priority of calling process to the highest priority class (or prevent
preemptions by other means). Note that this, together with Restriction 2, guar-
antees that the worst case duration of the critical section is determined solely
by itself. The guideline predictable resource access duration is thus realized.

2. Test whether the lock is free and if the remaining duration of the current NRT
phase suffices to complete the critical section of the requesting process5.

a) If the lock is free and time suffices to complete the critical section in
the current NRT phase, the lock is granted to the caller.

b) If the lock is occupied or remaining phase time is insufficient, the call-
ing process is put to sleep and registered in a partition manager inter-
nal FIFO ordered list that holds all pending MCL requests of NRT
processes. Note that at most one process can be waiting for the same
MCL at any point of time. This is guaranteed due to Restriction 3.

Releasing an MCL in NRT processes works as follows:

ReleaseMCL()
	

1. Release the lock.
2. Resume the former priority of the calling process (or return to preemptive mode

by other means).
3. If the waiting queue is not empty, test in FIFO order whether a pending request

can be fulfilled, i.e. whether the requested lock is free and sufficient time in the
current NRT phase is available. The first fulfillable request, if any, is then
granted.

5 Note that the duration of each NRT phase is assumed to be statically known. This can be
achieved by using a worst case execution time (WCET) analyzer [9], provided the critical sec-
tions contain no endless loops.

1102 J. Schneider

Naturally, both system calls have to be performed atomically within the parti-
tion manager.

5.3 Further solution parts

The further parts of the provided mechanism need to be established in the transi-
tion from the HRT phase to the NRT phase, and in the API calls used by the HRT
application. Both are parts of the partition manager and both are quite simple.

Whenever the partition manager switches from HRT phase to NRT phase it has
to awake the first process in its FIFO list with a fulfillable pending request for an
MCL, if any such process exists. For a request to be fulfillable the same condition
has to hold as always for NRT processes, i.e. the MCL has to be free and the re-
maining duration of the NRT phase must suffice to complete the critical section.
The latter part of the condition can be tested by comparing an, at build time confi-
gured, worst case duration of the individual critical section with the remaining
time to the phase switch. Note that the occurrence of phase switches is also stati-
cally predetermined, as the time slots are known.

The last part of the mechanism consists of the HRT version of the API call pair.
Since, as one can easily conclude, any request by an HRT task to an MCL can
immediately be granted, GetMCL() in its HRT version just allocates the MCL for
the calling task.6 The HRT version of ReleaseMCL() is also straightforward, as
it just releases the MCL. In addition to this the GetMCL() and ReleaseMCL()
calls have to establish a non-preemptable code section between themselves, to sa-
tisfy Requirement R2.

6 Conclusions

As shown in Section 2, the prevalent concepts for designing the system software
of mixed-criticality applications induces serious limitations for the concurrent en-
gineering of such systems. Any application developer that uses shared resources
has to consider the performance effects by using a system partition as proxy. Be-
cause there is an order of magnitude between the time needed to access a device or
memory region natively and via the system partition the applications themselves
have to be redesigned. From a systems engineering point of view the prevalent ap-
proach has a severe problem. It lacks a separation of the two concerns computa-

6 In a practical implementation sanity checks might be performed in addition, in order to assert
correct behavior and provide fault-tolerance mechanisms where appropriate. Clearly, this holds
also for the other parts of the MCL mechanism.

Overcoming the Interoperability Barrier in Mixed-Criticality Systems 1103

tion time allocation and communication latencies. The time to access a sensor or
an actuator depends inherently on the underlying scheduling of partitions.

The presented novel approach eliminates these problems by allowing a direct
access to shared resources while maintaining the essential properties. One impor-
tant issue for mixed-criticality systems is the ability of incremental certification
(i.e. changes made to one system part do not require the recertification of others).
Regarding timing and from a technical point of view this requires that the tempor-
al requirements of all system parts are still satisfied. It is immediately clear that
this property is given by construction for the MCL approach as far as the require-
ments of the HRT part are concerned.

The developers of safety-related hard real-time applications on one side and
those of soft or non real-time applications on the other side usually have different
experience backgrounds and different programming styles. Many solutions for
mixed-criticality systems have been proposed that imply that all system parts are
more or less developed according to one and the same philosophy. These concepts
might work in settings where the ”cultural chasm” between the developers of the
system parts is narrower, but seems unlikely to succeed in scenarios as considered
here. The novel concept does not impose particular development styles or philoso-
phies.

7 References

1. Avionics application software standard interface, 1 1997. ARINC Report 653.
2. http://www.autosar.org/. Cited 15 May 2012
3. http://www.genivi.org/. Cited 15 May 2012
4. Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: An approach to real-

time synchronization. IEEE Trans. Comput., 39(9):1175–1185, 1990.
5. Baker TP (1991) Stack-based scheduling of real-time processes. Real-Time Systems, 3(1):67–

99, 1991
6. Windsor J, Hjortnaes K (2009) Time and space partitioning in spacecraft avionics. Space Mis-

sion Challenges for Information Technology, IEEE International Conference on, 0:13–20,
7. Craveiro J, Rufino J, Almeida C, Covelo R, Venda P (2009) Embedded linux in a partitioned

architecture for aerospace applications. Computer Systems and Applications, ACS/IEEE In-
ternational Conference on, 0:132–138, 2009.

8. Road vehicles – Functional safety, 12 2010. ISO/FDIS 26262.
9. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,

Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The
worst-case execution-time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):1–53, 2008.

1104 J. Schneider

	92 Overcoming the Interoperability Barrier in Mixed-Criticality Systems
	1 Introduction
	2 Current Approaches
	3 System Model
	4 Guidelines and Requirements
	5 Solution Approach
	6 Conclusions
	7 References

