
Running Linux and AUTOSAR side by side∗

Tillmann Nett, Jörn Schneider
Trier University of Applied Sciences

Schneidershof
Trier, Germany

{T.Nett, J.Schneider}@Hochschule-Trier.de

ABSTRACT
Mixed criticality systems are systems, on which safety-critical
and non safety-critical software must run simultaneously.
For such a system it is necessary that all deadlines of safety
critical jobs can be met, and no safety-critical function is
impaired by any other function. Current approaches for
designing such a system include virtualization, hardware
partitioning or implementing all software as critical software.
These approaches however introduce additional costs due to
additional hardware, more complicated development tech-
niques for non-critical software or loss of processing power
due to the virtualization layer.

We demonstrate a novel method for implementing a system,
that provides lean interfaces for real-time software and a full
Unix interface for non real-time software. This system uses
vertical partitioning to run two different operating systems
on two cores of a single ARM multiprocessor.

1. INTRODUCTION
Real time operating systems such as AUTOSAR [1] allow

provably fast responses to physical events. This is required
for example in cars, where the speed of the wheels has to be
continuously monitored to take action if the brakes lock. As
a failure of such systems often can harm lives, such operating
systems need to be simple and easy to verify for correct
functional and temporal behaviour.

Interactive operating systems provide a good average case
performance thus delivering fast responses to user request in
most cases. However, they are not designed for predictability
and the worst-case reaction times can be very high.

In a growing class of systems users interaction, e. g. through
a GUI (Graphical User Interface), and guaranteed real-time
behavior of safety relevant functions has to be available
simultaneously. Such systems can be considered as a kind
of mixed-criticality systems. This means that such a system

∗This work is partly funded by the German Federal Min-
istry of Economics and Technology under grant number
01ME12043 within the econnect Germany project.

In: Proc. of the 7th Junior Researcher Workshop on Real-Time Computing
(JRWRTC). Sophia Antipolis, France, 2013.

must at the same time fulfill requirements for two types
of systems, which cannot easily be provided by a single
operating system.

A viable but impractical method for building such a hybrid
system is to implement all parts to the same standards
according to the highest level of criticality on top of a common
real-time operating system. This means all interactive parts,
including driver software and the complete user interface
would have to be implemented as real-time tasks. This
introduces additional costs during development and whenever
parts of the system are changed.

In some cases it may also be possible to change an existing
interactive operating system to provide real-time facilities.
For Linux various patches add additional schedulers, syn-
chronization primitives etc. [11]. However the changes to the
Linux kernel are often quite large as for example in case of
the PREEMPT RT patch. Also it is often unclear whether
these patches offer full hard real-time guarantees or only
soft real-time guarantees. Furthermore all kernel code would
have to satisfy the relevant safety standards such as [10] and
be included in worst-case execution time analyses.

Another method to build such systems is to put different
parts of the system on different hardware each with a single
operating system, and then connecting them via a bus or
network. This method however requires doubling the amount
of hardware build into the automobile and introduces latency
because of the communication via the network. Furthermore
this method increases the power consumption of the system.

A third design method is to add a separate partitioning
layer underneath the real-time and the interactive layer fol-
lowing the principle of [4]. This layer separates the real-time
system from the interactive system by assigning individual
slots in a major time cycle and separating memory as well as
forcing all communication over a so-called system partition.
However, the enforced indirection has several disadvantages
as described in [12].

We present a novel method for designing a mixed criticality
system, running two different operating systems (vertical
partitioning) on two Cortex-A9 cores. A similar method
has previously been used to run two differently configured
Linux kernels on two separate cores of an x86 System [8].
Other vertical partitioning setups first start the Linux system
and then set aside a separate core for real-time work using
core isolation methods provided by Linux [5]. This however
greatly increases the startup time of the real time portions as
the complete Linux system has to be up and running before
the real-time core can be isolated.

The implementation method described here was used for



implementing an interactive monitoring and control system
in electric cars for a field trial on user acceptance of smart
grid technology in the project econnect-Trier.

The rest of this paper is organized as follows: Section 2
shortly summarizes the requirements, which governed our
design and implementation process. In section 3 we give a
detailed overview of the implementation of our prototype,
including startup of both operating systems, and the static
resource sharing scheme. In section 4 we summarize our work
and show how future work can extend our implementation.

2. REQUIREMENTS
The main driving force for this research were the conflicting

requirements presented in Section 1. However at the same
time other non-functional requirements also had to be taken
into account. We will now present the detailed requirements
and their justifications.

1. It shall be possible to derive and prove hard real-time
bounds for tasks where needed.

2. It shall be possible to implement non real-time or soft
real-time parts using operating system abstractions
well known by desktop programmers.

3. It shall be easily possible to argue and verify that the
real-time tasks are not impaired by the non real-time
functions.

4. It shall be possible to add, change or remove non safety-
related software without additional analysis or verifica-
tion of the real-time software.

5. It shall be possible to derive a fixed deadline for the
boot time, i.e. the real-time parts of the system must
be responsive after a fixed time when the system is
started.

Requirements 1, 2, 3, and 4 have been justified in Section
1.

Requirement 5 has been defined, as in cyber physical
systems often rigorous constraints are imposed considering
answer time of systems. For example safety critical systems
in cars often have to answer to messages on the CAN-bus
within 100ms after system startup. This often requires large
optimizations of the boot code when implementing such
devices [2]. Our method on the other hand will optimize
the response latency after boot by first starting the real-
time operating systems and then starting the non real-time
operating system on a separate core.

3. SYSTEM CONFIGURATION
In a uniform memory architecture two or more separate

processor cores operate on the same shared memory. All
cores can access the same hardware and can receive the same
interrupts. For the mixed-criticality system a OMAP4460
multiprocessor [9] was used, which provides two cortex-a9
cores [6], two cortex-m3 cores as well as other specialized
cores. Only the two cortex-a9 cores were used and all other
cores were deactivated, to keep the system uniform.

3.1 Startup Sequence
During startup of a OMAP4460 the Cortex-A9 Core0 is

initialized first by the ROM code. The ROM code fetches the
boot code from non volatile storage and starts executing it.
At this point, the system runs in single core mode and can

Hardware Assigned to

Screen Linux
Touch-pad Linux
non-volatile memory (SD-Card) Linux
UMTS Module Linux
USB Subsystem Linux
L3 OCM RAM (SRAM) AUTOSAR
GPS-Module AUTOSAR
CAN-Module AUTOSAR
SPI-Interface AUTOSAR
UART-Interface AUTOSAR
L3 and L4 Interconnects AUTOSAR/Linux
Main Memory (DRAM) AUTOSAR/Linux
Interrupt Distributor AUTOSAR/Linux
Interrupt CPU Interfaces One per Operating System
Hardware Spinlocks AUTOSAR/Linux

Table 1: Hardware distribution among operating
Systems

perform initialization steps and load the operating system.
At the same time the Core1 is put into an idle state by the
ROM code, from which it can be awakened by the operating
system. Once the operating system is ready it can configure
the start address of Core1 and send a special signal which
awakes the other core. At this point the system runs in dual
core mode.

The mixed criticality system uses Das U-Boot [7] as a boot-
loader to load an AUTOSAR conforming operating system
from non-volatile storage. This AUTOSAR image currently
also includes a complete linux kernel statically linked in a
separate section of the executable. The real-time system
used is an open source version of the ArcticCore AUTOSAR
implementation [3]. This Version was implemented for a
single core machines, hence the second core is not started by
default. We added additional startup code which configures
and starts the other core. On the second core a short startup
routine is used to load the Linux image contained in the
AUTOSAR image and transfer control to the Linux image.
All startup parameters needed by linux are provided by the
core1 startup routine and are written to the correct locations
in memory. These parameters also include the maxcpus=1

option, which instructs the Linux kernel to run in single core
mode.

Das u-boot currently uses different code, depending on the
operating systems to be started. For Linux this code also
deactivates all interrupts, flushes caches and turns of caches
and the MMU. This code is not performed when starting
AUTOSAR from a ELF-image, but is required to later start
Linux from within AUTOSAR. To put the system into a
state that allows Linux to be booted, a call to this code
was manually added to the ELF-startup code of das u-boot.
As ArcticCore does not use caches or the MMU, it was not
impaired by these configuration changes. Interrupts are later
initialized again by code which was added to ArcticCore in
a way that interrupt lines could be statically assigned to one
of the Operating systems.

3.2 Hardware Assignment
To simplify the design of the system and to avoid the

need for resource management protocols, which may impair
real-time functions, we decided to statically assign most
hardware to one of the two operating system. However
some Hardware was needed by both operating Systems. For
this hardware is is necessary that initializations done by



t

core0

core1

U-Boot SPL U-Boot AUTOSAR startup AUTOSAR startup hook AUTOSAR tasks

Core1 Configuration Linux decompressor Linux code

Figure 1: Startup sequence of the mixed system

Figure 2: Memory configuration of the final mixed
system

AUTOSAR are not be overwritten during booting of Linux.
Hence for all shared hardware which is normally initialized
by Linux, the initialization routines were deactivated and
if necessary the initialization was performed during startup
of AUTOSAR. One exception to this rule was the main
memory. Main memory is initialized even prior to the start
of the OS in das u-boot, hence this initialization could be kept
in place. However to ensure that the address space reserved
for AUTOSAR would not be used by Linux, we manually
deactivated this address space in the Linux kernel using
the mem= boot parameters. Like all other boot parameters,
these were dynamically written by the Core1 startup code
within AUTOSAR, based on the actual address space used
by AUTOSAR.

To ensure timing correctness for memory access the MMU
was disabled on the core running AUTOSAR. For OMAP4460
SOCs disabling the MMU also disables all caches for memory
used by that core. To provide the real time parts with a
fast memory the L3 OCM RAM (SRAM) was used for data
parts of the system. The L3 and L4 Interconnects used for
communication between subsystems as well as memory of
the OMAP4460 was shared between subsystems. A closer
analysis of the arbitration strategies for the Interconnects to
ensure that all deadlines can be met is still required.

3.3 Interrupt Distribution
Both Cortex-A9 Cores in the OMAP4460 share a single

generic interrupt controller (GIC) [1]. This GIC is responsible
for global masking of specific interrupts and distributing
interrupts to the cores. The GIC is divided into a global
distributor and one CPU-interface per core. The distributor
can distribute interrupts to one or more CPU-interfaces which
then signal the interrupt to the CPU. Interrupts can then

be acknowledged on the CPU-Interface. Interrupts can both
be masked in the CPU-interface by setting a flag, as well as
in the distributor by setting an empty target list.

Neither the application context of the described system,
nor the chosen assignment of hardware resources require to
signal interrupts to more than one core. At startup all inter-
rupts are configured by AUTOSAR with an empty target list.
The target is then set to the appropriate core when activating
the interrupt in AUTOSAR or Linux. Reconfiguration of the
target within the distributor requires setting a single bit in a
memory mapped register. As other bits in the same register
may be owned by another operating system, a lock had to
be added around any configuration code. For this Lock one
of the hardware spinlocks provided by the OMAP4460 SOC
was used. Hardware spinlocks use memory mapped registers
for operation, hence providing a fast way for synchronization
between cores. This lock is only taken during short sections
within the Linux kernel. Before requesting this lock we dis-
able preemption in Linux. Because preemption is disabled,
only a single kernel-thread can wait for the lock at any time.
This means, the time that any AUTOSAR task must wait
for the lock is bounded and a worst-case execution time anal-
ysis for AUTOSAR tasks remains possible, by taking this
additional lock contention time into account. In case Linux
is run on multiple cores however the lock could be requested
by multiple kernel threads simultaneously. In this case it is
possible for one of the threads to steal the lock from the wait-
ing AUTOSAR task and the locking time becomes unbound.
In this case a different synchronization primitive is necessary
to ensure bounded execution times within AUTOSAR. For
example a mixed-criticality lock [12] could be used. Within
AUTOSAR all interrupts are configured during startup of
the system, so that lock contention times only influence the
startup and schedulability is not impacted by the lock.

3.4 Communication
To share data between AUTOSAR and Linux we added

real-time communication facilities. For stream transmissions
a non-blocking ring buffer implementation is used. Multiple
ring buffers are provided for multiple data streams. Using
these ring-buffers AUTOSAR tasks can send data packets to
Linux, which are then received in a kernel thread. Multiple
tasks sending data simultaneously through the same ring
buffer must be synchronized with each other. For this the
real-time resource sharing mechanisms within AUTOSAR
are used.

For communication from Linux to AUTOSAR only the
transmission of single word signals was needed. Hence these
words were reserved within a shared memory space. These
memory words are written in Linux using an atomic store
operation and read within AUTOSAR using an atomic read



operation.
All data structures needed for communication are set up

by AUTOSAR within the address space used by AUTOSAR.
The addresses of these data structures are then transmitted
to Linux prior to startup using a boot parameter. These
data structures are then read from a Linux kernel module
which configures all kernel data structures and offers a de-
vice file for communication with user space. The provided
communication facilities match the requirements imposed by
the current project, i.e. single word transmission from Linux
to AUTOSAR and stream transmission from AUTOSAR to
Linux.

3.5 Modifications to the Linux Kernel
One of the goals of this setup was to keep the modification

of the Linux source code to a minimum. Hence, additional
functions were implemented in a kernel module, where possi-
ble. This module can be compiled into the kernel or loaded
at runtime. Loading of the module has no impact on the
timing behaviour of the real-time parts, because no shared
resources are needed. Some additional modifications were
still needed to allow a separation of the operating systems.

The Linaro Linux Kernel for an OMAP4460 SOC contains
a complete hardware description of all submodules on the
chip. This description is read during startup and all hard-
ware modules are automatically initialized by the kernel. No
dynamic configuration of the SOC hardware is performed.
This initialization also includes all hardware modules which
were shared or statically assigned to AUTOSAR. As this
additional initialization would undo all previous initializa-
tions done by AUTOSAR, we had to reduce the hardware
initialization. For this it was sufficient to remove any module
used by AUTOSAR from the hardware description tables
provided in the Linux source tree.

During it’s initialization routine Linux on the OMAP4460
also configures the GIC and sets all interrupts to target the
first core used by Linux. As the GIC is already set up by
AUTOSAR this additional initialization code was removed.
Instead the interrupt targets are set when the interrupt is
activated within Linux. The code for setting the target upon
activation was also added.

In the SRAM management code it was completely sufficent
to set the SRAM size to zero. The current Linux kernel
already includes code paths to skip all SRAM initializations
in case there is no SRAM on the current system and to reject
all allocations on the SRAM.

As these changes are quite small and only include parts
of the kernel which change rarely, it is easily possible to
re-apply the same patches to newer kernel versions, making
updates of the Linux portions simple.

4. CONCLUSIONS AND FUTURE WORK
We were able to show that it is possible to use separate

cores for different operating systems on multi-core processors.
While previous work [8] only showed such a setup for x86
systems running two invocations of the same Linux system,
we extended this work to the ARM-Platform where one of
the operating systems was a real-time operating system. The
real-time ability was not impaired by the simultaneously
running non-real-time system.

Future work may include a better resource sharing among
both systems. As it is rare for both systems to require
the same hardware at the same time, it may be possible

to provide a suitable protocol that enables the necessary
resource-sharing between systems. However such a protocol
would have to provide guaranteed latency for the real-time
system, but not for Linux system, so an asymmetric protocol
could be used. This could for example be implemented
using Mixed Criticality Locks [12], which may be adapted
for multicore architectures.

Also a detailed comparison and experimental evaluation of
the different methods for implementing mixed criticality sys-
tems is still needed. At this point however such a comparison
would be beyond the scope of this article.

References
[1] ARM Generic Interrupt Controller - Architecture Spec-

ification. ARM. 2011.

[2] Jan Altenberg. Fastboot Technologie für Linux. Tech.
rep. Mülhofen, Germany: linutronix, 2010.

[3] Arctic Core - the open source AUTOSAR embedded
platform. ARCCORE AB, 2011. url: http://www.

arccore.com/products/arctic-core/.

[4] Avionics Application Software Standard Interface. AR-
INC Report 653. Aeronautical Radio Inc., Jan. 1997.

[5] Michael Christofferson. 4 Ways to Improve Linux Per-
formance for Multicore Devices. IEEE Spectrum Online
Tech Insider Webinar. 2013.

[6] Cortex?-A9 MPCore - Technical Reference Manual.
ARM. 2009.

[7] Wolfgang Denk. Das U-Boot. 2012. url: http://git.
denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=

summary.

[8] Adhiraj Joshi et al. “Twin-Linux: Running indepen-
dent Linux Kernels simultaneously on separate cores
of a multicore system”. In: Proc. of the Ottawa Linux
Symposium. Ottawa, Canada, 2010, pp. 101–107.

[9] OMAP4460 Multimedia Device Silicon Revision 1.x.
Technical Reference Manual. Version F. Texas Instru-
ments. 2011.

[10] Road vehicles – Functional safety. ISO/FDIS 26262.
International Organization for Standardization, Dec.
2010.

[11] Steven Rostedt and Darren V Hart. “Internals of the
RT Patch”. In: Proc. of the Ottawa Linux Symposium.
Vol. Two. Ottawa, Canada, 2007, pp. 161–171.

[12] Jörn Schneider. “Overcoming the Interoperability Bar-
rier in Mixed-Criticality Systems”. In: 19th ISPE In-
ternational Conference on Concurrent Engineering -
CE2012. Trier, Germany, 2012.


