
4th International Conference on Leveraging Applications of Formal Methods, Verification and Validation,
Heraclion, Crete, 2010, Special Track on Resource and Timing Analysis

http://www.fh-trier.de/go/prosymig

Towards an Evaluation Infrastructure
for Automotive Multicore Real-Time

Operating Systems

Jörn Schneider, Christian Eltges

Dept. of Computer Science
Trier University of Applied Sciences

Trier, Germany
{j.schneider, c.eltges}@fh-trier.de

Abstract. The automotive industry is on the road to multicore and
already included supporting features in their AUTOSAR standard, yet
they could not decide for a multicore resource locking protocol. It is
crucial for the future acceptance and possibilities of multicore systems to
allow for informed decisions on this topic, as it immediately impacts the
inter-core communication performance and thereby the value-cost ratio
of such systems. We present the design of a real-time operating system
simulator that allows to evaluate the different multicore synchronisation
mechanisms of the real-time research community regarding their fitness
for automotive hard real-time applications. You can reuse the key design
idea of this simulator for any simulation based tool for the early timing
evaluation of different real-time mechanisms, e. g. scheduling algorithms.

1 Problem

A challenging application area for multicore systems are hard real-time systems
in cars, e. g. electronic control units for airbags, electronic stability control, and
driver assistance systems. The automotive industry recently released the speci-
fication of a first multiprocessor real-time operating system (RTOS) as part of
the AUTOSAR standard [1]. The concept specifies a partitioned system with
tasks and interrupt service routines statically mapped to cores. Each core runs
a fixed priority scheduler for its particular task set and tasks can be activated
across cores. Transferring data is based on sharing memory between cores.

But how can this be done without deadlocks, priority inversion and un-
bounded remote blocking? Traditionally, resource locking protocols are used in
real-time systems to achieve this. In the automotive domain the immediate ceil-
ing priority protocol (referred to as OSEK Ceiling Priority Protocol) is readily
available in any OSEK or AUTOSAR compliant RTOS. Yet, this works for
uniprocessor systems only.

The responsible AUTOSAR subcommittee, which was then headed by the
first author of this paper, initially planned to introduce a multicore resource
locking protocol for this release of the operating system specification. How-
ever, it turned out that this goal was too ambitious given the short deadline



4th International Conference on Leveraging Applications of Formal Methods, Verification and Validation,
Heraclion, Crete, 2010, Special Track on Resource and Timing Analysis

http://www.fh-trier.de/go/prosymig

for AUTOSAR release 4.0. The requirements document [2] still reflects the am-
bitious goal, yet the specification itself clearly changed in this regard after the
responsible person for the topic changed. AUTOSAR release 4.0 lacks a multi-
processor synchronization mechanism that is suitable for hard real-time systems
— only spin locks are supported.

One reason for this shortcoming is that it is unclear which resource lock-
ing approach is most suited to fulfil the requirements of the industrial practice.
Clearly, the performance impact plays a central role here. Investigating this im-
pact requires to look at two aspects. First, the blocking behaviour and second the
implementation overhead. The former one depends on the resource locking char-
acteristics of the application in combination with the particular resource locking
protocol. The quantity of the latter additionally depends on the chosen reali-
sation of the resource locking protocol within the RTOS. Naturally, the timing
aspects of the chosen protocol might seriously impact the communication effi-
ciency. Because the main value of multicore systems for the automotive domain
lies in its better cost-performance ratio, the timing behavior of the cross-core
communication is crucial for the adoption of the new hardware concepts.

The automotive industry cannot afford to go through the painful process of
implementing different resource locking protocols, applying them in various prod-
ucts, and making enough experience to differentiate good from bad approaches.
We designed a dedicated simulator to address this problem.

2 The Proposed Simulator

The key design idea that distinguishes our simulator from similar approaches is
to consequently separate the two concerns simulated functionality and simulated
time. In other words, if you specify a new mechanism to be simulated, e. g. a
resource locking concept, you have to specify the algorithm and its temporal
behaviour separately. You might think that this is an unnecessary and cumber-
some complication. But it even reduces your workload, if you use the simulator
for the intended purpose.

When considering the basic functionality of resource locking protocols (or
real-time operating systems as a whole) it becomes quite evident that there are
a lot of fundamental operations that need to be performed regardless of the spe-
cific version. For instance, when deciding which task is to run next, it is in most
cases necessary to pick the task with the highest priority. Various implementa-
tions of the operation identify highest priority task are possible, yet the result is
always the same. However, the timing might be completely different. When you
use our simulator you can simply take a provided library function getHighest-
PriorityJob and specify the timing behaviour of the particular implementation
you have in mind without even implementing it (see Listing 1.3 and 1.4 below for
examples). To compare two RTOS A and B with compatible APIs but different
implementations you just bind the corresponding timing functions to the API
functions for each simulation run.



4th International Conference on Leveraging Applications of Formal Methods, Verification and Validation,
Heraclion, Crete, 2010, Special Track on Resource and Timing Analysis

http://www.fh-trier.de/go/prosymig

We believe that the idea to separate simulated functionality and simulated
timing can be widely reused in simulation based tools for the early timing eval-
uation of different real-time mechanisms, e. g. scheduling algorithms. As we con-
jecture this makes such tools much more usable for different research groups to
compare their approaches on equal terms.

Our simulator allows to define tasks in an abstract language (instead of C
code). The only things to be specified in this language for a given task are the
scheduling relevant calls to API-functions and sections of the task that, from a
scheduling point of view, just consume time. An example that shows this idea
can be seen in Listing 1.1. It defines a task that executes some calculations that
do not influence the scheduling (denoted by the time x; expressions) and locks
a resource RES 1 for 5000 processor cycles.

Listing 1.1. Definition of a task

Task t1 = do {

time 10000;

GetResource RES_1;

time 5000;

ReleaseResource RES_1;

time 3000;

TerminateTask;

}

Internals of API-calls can be specified with the help of basic functions. These
are the minimal building blocks of the simulator language. Listing 1.2 gives an
example API-call implementation using basic functions, like getHighestPriority-
Job and setState.

Listing 1.2. Definition of an API-call

TerminateTask = do {

setState currentJob SUSPENDED;

j <- getHighestPriorityJob;

dispatch j;

}

To compare different protocols, the execution times of the basic functions are
specified via timing functions for each protocol. When the simulator executes a
basic function, it calculates the number of cycles via the corresponding timing
function.

This makes it possible to have different timing functions that simulate differ-
ent implementations, without reimplementing the basic functions. For example,
consider the getHighestPriorityJob function. The priority queue could be imple-
mented as an unsorted list or as a sorted list. In the first case, getting the highest
priority job would take O(n) steps, in the second case it would take O(1) steps.
Examples are given in Listing 1.3 and Listing 1.4.

Listing 1.3. Timing function for linear runtime

linearTimeOfGetHighestPriorityJob

return 10 + 5 * length(readyQueue)



4th International Conference on Leveraging Applications of Formal Methods, Verification and Validation,
Heraclion, Crete, 2010, Special Track on Resource and Timing Analysis

http://www.fh-trier.de/go/prosymig

Listing 1.4. Timing function for constant runtime

constTimeOfGetHighestPriorityJob

return 10

Note that timing functions can use the complete state of the simulated code
to derive the proper execution time for each calling context. This feature is used
in Listing 1.3 to consider the current length of the ready queue.

3 Related Work

A multitude of simulators for different purposes were implemented by research
groups or companies. Naturally we did not investigate all of them and the ones
we investigated were usually different in many important aspects, like timing
granularity and so on. None of them seems to follow our concept of consequently
separating the two concerns simulated timing and simulated functionality. At
least one simulator nevertheless should be mentioned here. RTSSim [3] is closely
comparable with our work, it has an even broader scope regarding its intended
usage. The key differences are that we use an abstract language instead of C,
that we support multicore, and that our approach consequently separates the
two concerns timing and functionality.

4 Conclusion

We presented the design of a novel simulator for the specific purpose of evaluat-
ing multicore resource locking protocols for their fitness to be used by industry
in automotive electronic control units. The key idea to separate functional real-
isation from simulation time is one that, as we believe, is well suited to be used
in many simulation approaches in the field of timing analysis. We hope that the
final simulator as well as the simple idea of separating function and timing will
be (re-)used in the research community.

References

1. AUTOSAR release 4.0 — Specification of Multi-Core OS Architecture (12 2009),
http://www.autosar.org/download/R4.0/AUTOSAR SWS MultiCoreOS.pdf

2. AUTOSAR release 4.0 — Requirements on Multi-Core OS Architecture (11 2009),
http://www.autosar.org/download/R4.0/AUTOSAR SRS MultiCoreOS.pdf

3. Kraft, J.: RTSSim - a simulation framework for complex embed-
ded systems. Technical Report, Mälardalen University (March 2009),
http://www.mrtc.mdh.se/publications/1629.pdf


