
Migration of Automotive Real-Time Software to Multicore Systems:
First Steps towards an Automated Solution

Jörn Schneider, Michael Bohn, Robert Rößger
Dept. of Computer Science

Trier University of Applied Sciences

Trier, Germany

{j.schneider, m.bohn, r.roessger}@fh-trier.de

Abstract—With the advent of multicore systems in the auto-
motive industry, a multitude of existing single-core applications
wait to be migrated to multicore hardware. Manually migrating
existing legacy software to multicore platforms in this industrial
setting is practically infeasible, because it would be highly error
prone, even if a host of skilled programmers were available.
Therefore, tool support is strongly needed. This paper describes
the challenges of migrating real-time software in the automotive
context and our approach to use static program analysis to
develop automated migration tools and methods.

Keywords-real-time systems; multicore; multiprocessor; soft-
ware migration; static program analysis

I. INTRODUCTION

With the switch to multicore systems, the automotive
industry faces a disruptive paradigm shift due to the in-
troduction of true concurrency. The adaption of existing
application and system software will be a very complex
and yet tedious process leading to unpredictable errors, if
done manually. The ProSyMig1 project aims at developing
methods and tools for the (semi-)automatic migration of
real-time software to multicore systems.

We are not aware of other research groups addressing this
issue. In [1] the migration to multi-core is considered, but
with a focus on scheduling and partitioning.

A. System Model

Automotive real-time software running on multicore sys-
tems has to be compliant to the AUTOSAR standard [2].
Among other things AUTOSAR provides a middleware
with standardized communication primitives, and a real-time
operating system. The legacy software to be migrated is
not necessarily AUTOSAR compliant. It usually still uses
proprietary mechanisms, e. g. for communication and syn-
chronization, and lacks a clear separation between hardware
dependent system software and application software. The
common ground of legacy and migrated software is the

This work is partly funded by the German Federal Ministry of Education
and Research

1
Program and System Analysis Tools for the Migration of Embedded

Software to Multicore Systems

OSEK real-time operating system standard, as this is also
the core of the AUTOSAR OS.

The latest release of AUTOSAR (4.0) appeared end of
2009 and includes for the first time some features for
multiprocessing. As this is the assumed system model for
this paper, we give this short characterization of these
features: AUTOSAR prescribes bound multiprocessing, i. e.
a partitioned system with tasks and interrupt service routines
statically mapped to cores. Each core runs a fixed priority
scheduler for its particular task set. It is possible to activate
tasks and to send events (i. e. wake up signals for tasks in
waiting state) across core boundaries. Unfortunately, the OS
provides only spin locks as dedicated mechanism for mutual
exclusion across cores.

B. Contributions

In this paper we will first highlight the problem of
a frequent practice related to the migration to multicore
systems (locking interrupts as measure for mutual exclusion)
to exemplify our solution approach. Afterwards the scope
is widened to a more comprehensive view by introducing
three classes of constraints that need to be preserved when
migrating a legacy system. We show that even with perfect
information about the established constraints in the legacy
system, it is likely that the migrated software wastes a lot of
the processing power of multicore hardware. Even though it
is impossible to achieve perfectly precise information about
the existing constraints of the original system, we found a
solution that, as we believe, will eventually provide auto-
mated migration to reasonably efficient multicore systems.

II. PROBLEM DESCRIPTION AND APPROACH

A. The problem

As an example, assume a single core system with three
tasks A, B and C and two interrupt-service-routines (ISRs)
ISR1 and ISR2. The priorities of the tasks are given as
Prio(A) > Prio(B) > Prio(C). The notional priorities of
ISRs are above task priorities. Task B establishes a critical
section by calling Disable- and EnableAllInterrupts. The
developer’s intention behind the disabling of interrupts in
task B might be to protect a data structure that task B shares

22nd EUROMICRO Conference on Real-Time Systems, Brussels, Belgium, 2010, WIP Session

http://www.fh-trier.de/go/prosymig

Michael Bohn


Michael Bohn


Michael Bohn


Michael Bohn


Michael Bohn


Schneider
Schreibmaschinentext



C

B

A

ISR2

ISR1

CSISR2

CSISR1

CSB

Disable Interrupts

Enable Interrupts

CSA

Figure 1. Potential critical sections by disabling interrupts in task B.
Critical sections are shaded in gray

CSISR1 CSISR2

CSB

CSA

Figure 2. Mutual exclusion relation of critical sections in Figure 1

with ISR1. To prevent a race condition between ISR1 and
task B he needs to use the interrupt disable mechanism.

If we (automatically) analyze the scenario described
above, we do not know the developers intentions for the
calls to Disable- and EnableAllInterrupts. We therefore have
to conservatively identify all possible other critical sections
that are in a mutual exclusion relation with the critical
section in task B. Additionally to the actually intended
mutual exclusion between the critical section in task B
and ISR1, we have to assume a mutual exclusion between
ISR2 and the critical section in task B. We assume also
a mutual exclusion between task A and task B, because
the disabling of interrupts in task B prevents task A from
running concurrently with B. Note, that there is no mutual
exclusion assumed between task C and the critical section
in task B. This is, because task C has lower priority than
task B. Task C could be preempted at any time by task B.
Figure 1 shows the identified critical sections in the example
tasks and ISRs. The mutual exclusion relations between the
critical sections are depicted in Figure 2. The edges in this
graph are the mutual exclusion relations.

The so identified critical sections are the potential critical
sections. They might be used to protect a physical resource
from being accessed concurrently. In the real system CSB

shares resources only with a subset of the critical sections in
Figure 2, namely only the critical section CS ISR1 . Because
it is unknown (from a an analysis point of view) whether
the protection is actually needed or just a side effect of the
disabling of interrupts, the solely safe assumption is that all
mutual exclusion relations need to be preserved.

The found mutual exclusion relations are potentially
present in the single core legacy system. If this set is not
reduced further (an approach for automatically achieving this
is presented in the next subsection) the corresponding critical

sections also have to be protected in the multicore system
to prevent the introduction of race conditions. Whether a
particular mutual exclusion relation is still existing in the
multicore system without code changes depends on the
mapping of tasks and ISRs to cores. Assume that task A
and ISR1 are bound to core zero and task B, C and ISR2

to core one, some mutual exclusion relations still exist while
others do not. The considered mapping eliminates the mutual
exclusion relation between task A and CSB . The exclusion
of task A during CSB was established by disabling inter-
rupts. This does in no way hinder the execution of a task
on a different core. Therefore, the potential critical section
in task B is not protected against task A (and vice versa
since the higher priority of task A does not prevent the
scheduling of task B). If this mapping has to be realized, a
different mechanism for protecting the critical section has to
be used (e. g. a multiprocessor resource locking mechanism).
For similar reasons, the mutual exclusion between ISR1 and
CSB is no longer given.

Note that the critical sections in ISR2 and task B are still
protected against each other, because task B and ISR2 are
bound to the same core.

B. Conservative Solution

In a first step it is sufficient to derive the set of po-
tential critical sections along with their mutual exclusion
relations. For the considered mechanisms of task priorities
and disabling interrupts this information can be automati-
cally extracted from the AUTOSAR configuration files [3]
and the C-code. The XML configuration files contain the
information about the tasks and their priorities. To extract
the critical sections that are established by calls to Disable-
and EnableAllInterrupts we have to analyze the source code
of the tasks and ISRs. Because calls to the interrupt API-
functions of the OS are usually concealed in the system
software, which is often closely entangled with the appli-
cation, it is quite likely to find these calls nested inside
conditional expressions or loops. Therefore, we currently
develop a suiting dataflow analysis. Thereby it is guaranteed
that no critical section of this type is missed, moreover,
the analysis tries to extract the smallest critical section, but
overapproximates the area of a critical section if the exact
area cannot be inferred.

After all potential critical sections that are established by
the disabling of interrupts have been identified, the relation
graph to other potential critical sections for each such critical
section can be build from the information of the analysis and
the configuration file.

Note, that there are two levels of overapproximation
present. The first one comes from the analysis that tries
to find the smallest critical sections that are established
by interrupt locking calls. Although, we are interested in
reducing this overapproximation as much as possible, in
general we cannot avoid it, since the underlying problem

22nd EUROMICRO Conference on Real-Time Systems, Brussels, Belgium, 2010, WIP Session

http://www.fh-trier.de/go/prosymig



is undecidable. The second overapproximation is the one
that stems from the set of mutual exclusion relations in the
original system that are not really necessary.

C. Improved Solution

The conservative approach in the previous section gener-
ates a lot of potential critical sections. Although every po-
tential critical section might actually require protection, this
is probably not the case in real systems. To reduce the set of
potential critical sections in a safe way, we propose a static
program analysis that derives the memory access behavior.
The idea of this analysis is as follows. If we can determine
the memory locations that may be accessed in each critical
section, we can eliminate those mutual exclusion relations
between critical sections that access disjunct memory areas
only. At least we can thereby guarantee that the mutual
exclusion relations are not needed to prevent concurrent
access to shared memory or peripherals. Note that we can not
deduce that the critical section is generally not needed. If, for
example, two different actuators are controlled in the critical
sections, two different memory locations are accessed for
controlling the actuator. Although the memory analysis
would conclude that the critical sections access disjunct
memory locations, there might be the requirement that the
two actuator positions are never changed concurrently. This
requirement cannot be automatically inferred from code and
has to be provided by the user.

The memory access analysis should comply with the
following requirements. The result of the analysis should
be all memory locations that may be accessed in the critical
section. These accesses can be represented as intervals of
memory addresses that are subsets of the whole memory.
The accesses to the memory should be separately classified
as read or write access. If the analysis cannot determine
which memory locations are accessed it should assume that
the whole memory is accessed.

A good starting point could be a value analysis, for
example the sophisticated one implemented in ASTREE [4].
Value analyzers derive the potential values of variables at
each program point. This is useful to decide which memory
areas are accessed in case of arrays or pointers. A classical
value analysis though does not provide all information we
need. For example it is necessary to derive which ordinary
global variables (not only arrays and pointers) are accessed
and to distinguish between read and write accesses. This
distinction is needed in the next step: the evaluation of the
result of the memory access analysis.

After the intervals of memory access have been computed,
the mutual exclusion relation between two critical sections
can be evaluated. The test if two critical sections only
access disjunct memory locations is trivial with the previous
analysis result. We only have to test if all memory intervals
in the set of memory accesses are pairwise disjunct. If we
find out that the two critical sections never access the same

memory we can guarantee that the mutual exclusion is not
needed for memory access protection. If two critical sections
potentially access the same memory location, it might still
be possible to automatically eliminate the mutual exclusion
relation. If the considered critical sections only read from
the same memory locations, the mutual exclusion is not
necessary assuming that concurrent reads can be allowed.
Unless of course there are other reasons, for example the
already mentioned, mutual exclusive positioning of two
actuators, which has to be specified by the user.

If we find out that in all connected critical sections only a
common memory location is read, all those critical sections
can be dropped. This could be the case if a configuration
parameter, is only written at the operating system startup
and subsequently only read. On the other extreme, if we see
that in each critical section a common memory location is
written, all potential critical section still need to be protected
to prevent race conditions.

In the case of multiple readers and writers present, we
can decide locally if an edge in the graph in Figure 2 is still
needed.

III. THE BIG PICTURE

A. Constraint classes

In the previous sections we presented our concept of
using static program analysis to extract information from
C-code and refine this information with further analyses for
the example of locking interrupts. Apart from this there are
many further mechanisms that provide mutual exclusion on
single core systems but cannot guarantee this on multicore
processors. We collected a list of such mechanisms and
aim at identifying the mechanisms with practical relevance
by studying typical automotive real-time software. Besides
mutual exclusion we identified two more constraint classes

and different mechanisms that can be used to realize these
concurrency constraints in single core, yet not in multicore
systems. The constraint classes and their relations are shown
in Figure 3. The weakest constraint between code segments
of jobs is the none constraint. If there is no constraint
between code segments, there is no restriction for concurrent
execution. The next constraint class is the mutual exclusion.
If there is a mutual exclusion constraint between two code
segments of jobs, these code segments are not allowed to be
executed concurrently. That is, the first code segment can
be executed before the other code segment or vice versa.
A precedence constraint between code segments of jobs
enforces a sequential execution order. If code segment A
is in precedence constraint with code segment B, A must
finish execution before B starts execution. The strongest
constraint class that we consider is the temporal constraint.
A temporal constraint between code segments of jobs is an
interval [x, y], where x is the minimum and y the maximum
temporal distance between the code segments. The interval
is denoted as the temporal distance.

22nd EUROMICRO Conference on Real-Time Systems, Brussels, Belgium, 2010, WIP Session

http://www.fh-trier.de/go/prosymig



temporal constraint

precedence constraint

mutual exclusion constraint

none

stricter

Figure 3. Hierarchy of concurrency constraints

The constraint classes are ordered by their strictness and
form a hierarchy, where a more strict constraint implies a
less strict constraint. The precedence constraint is a special
form of the temporal constraint, where the temporal distance
is implicitly set to [0,∞]. Note that although these con-
straints are general in the sense that they are not limited to
real-time systems, the actual mechanisms that are used to re-
alize them in automotive electronic control units rely heavily
on typical real-time mechanisms. For mutual exclusion most
mechanisms rely on the fixed priority scheduling, e. g. two
tasks sharing the same priority cannot preempt each other.
Furthermore mutual exclusion is often used in combination
with a temporal offset between jobs to achieve precedence.
And precedence together with a certain best case execution
time is sometimes used to realize a temporal constraint.

B. Realization approach

This section sketches the requirements for a toolset to
help in the migration process. As already shown there exist
various problem cases where detailed information has to be
gathered in order to decide whether and how a certain code
section has to be modified.

Not all information can be extracted directly from code
files. As automotive real-time software is usually developed
in a model-driven way, we also plan to analyze these
models and configuration files, which we summarize under
the term artifacts. This helps if specification knowledge is
modeled on a higher level of abstraction and disappeared by
being transformed into implicit mechanisms (e. g. locking
interrupts) on code level.

Some information cannot be extracted at all. For example,
if there is a temporal distance between code sections which
stems from external requirements, we will hardly find the
exact distance in any artifact. So the conservative assumption
cannot be weakened, leading to potentially inappropriate
overestimation. Therefore user input and user interaction is
necessary to provide the possibility to incorporate external
specification knowledge from the user. This means adequate
visualizations of analysis results have to be found and
mechanisms have to be implemented to make the system
at least partially interactive.

Even a single use case like finding mutual exclusion
depends on various analyses which are interconnected and
potentially produce a huge amount of data. Collecting
analysis data in an information repository could allow for
caching mechanisms, i. e. each analysis stores its result in

the repository and only needs to be run if its input data has
changed. Successive analyses then can take their input from
this source, so linking analyses becomes configurable on a
data level. Additionally this abstraction supports interactive
usage, as well as providing an interface to external queries
for reporting services.

The high-level requirements for the analysis framework
are accordingly: handling of various types of artifacts, effi-
cient combining of analyses and ability for user interaction.

IV. CONCLUSION AND FUTURE WORK

We identified three important constraint classes of real-
time systems, that need special consideration when migrat-
ing to multicore hardware. As shown on the example of mu-
tual exclusion, the mechanisms typically used in automotive
real-time software establish significantly more constraints
in single core systems than actually needed. It should be
obvious that realizing all such concurrency constraining
conditions in the multicore target system seriously limits
the exploitation of parallelism. The described approach of
combining different static program analyses to automatically
detect potentially unnecessary constraint will, as we believe,
significantly improve the efficiency of the migration process
as well as the quality and performance of the migrated
software.

This hypothesis has to be evaluated in our future work.
Further challenges lie ahead. For instance extracting and im-
proving the temporal constraints requires the combination of
WCET, BCET and schedulability analysis to find constraints
that potentially have to be preserved during the migration.
The initially considered mutual exclusion constraint is also
of importance here, since for example the WCET of critical
sections is needed by the schedulability analysis.

Visualizing the extracted information and relations appro-
priately will also be important for the needed interaction
with the user.

REFERENCES

[1] F. Nemati, M. Behnam, and T. Nolte, “Efficiently migrating
real-time systems to multi-cores,” in Proceedings of 14th IEEE

ETFA’09, September 2009.

[2] AUTOSAR 4.0 Specification, AUTOSAR Std., 2009.

[3] AUTOSAR Specification of the Meta-Model, AUTOSAR Std.,
2009.

[4] P. Cousot, “The astrée static analysis tool,” in ES PASS Work-

shop, Berlin, Germany, 16–17 October 2007.

22nd EUROMICRO Conference on Real-Time Systems, Brussels, Belgium, 2010, WIP Session

http://www.fh-trier.de/go/prosymig




