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Abstract. The development of a system for the automated creation of flood forecast models is
presented. The system concept is based on building rainfall-runoff models using Fuzzy Logic.
Beginning with the discussion of manual discharge forecast of a flood event, the structure of
special fuzzy models is pointed out on the basis of an existing rainfall-runoff model. The
parallels to the manual forecast calculation are specified and referred to the problems with the
generation of complex rainfall-runoff models. It is then shown, how these problems can be
solved. The algorithm and it’s implementation in a development system is described for an
almost completely automated generation for fuzzy rainfall-runoff models. Additionally
practical forecast results are demonstrated.

1 Introduction

The emergence of a flood and thus its forecast depend elementarily on the discharge process
in the natural catchment area of the river. This process is rather complex and its mapping into
a suitable process model for an automated flood forecast is accordingly difficult. Although in
many places the number of metering stations (e.g. rainfall, level, etc.) has been increased and
the meteorological forecast network becomes more finely strained, some important process
variables (e.g. evaporation) cannot be measured explicitly. Thus, describing the flows in a
river catchment area must be based on simplifications, which lead to different levels of
abstraction and different approaches for modeling.

The increasing number of metering stations, which become more and more on-line
accessible, as well as the use of high performance computers, have it made possible to create
more complex but also computing-intensive models in the last years. Such models are mainly
used in the fields of forecast and simulation and should fulfill various requirements:

• Primarily, the models should provide an optimal correlation of calculated and actual
values.

• It should be possible to create models for different forecast periods and catchment
areas (e.g. different in morphology, size, climate region). The manual expenditure in
creating and adapting a model should be as small as possible.

• Input stems from different types of measured variables and represents different sub
areas of the catchment area (e.g. rainfall, seasonal information, …). It should be
possible to integrate and combine the different types within the forecast model.

• Modifications of the natural discharge process, as for example dams or weirs should
also be considered in connection with changes of the time lags or different wave
forms.

• Discharge models have to work on-line with actual measured data and should deliver
flood forecast just in time.
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In the following we describe the development of a system, which supplies an automated
generation of rainfall-runoff models to a large extend. The system is based on a flood forecast
model using Fuzzy Logic fulfilling the requirements mentioned above as far as possible. First,
a simple example of a flood forecast model is presented to give an insight in the system
approach and used Fuzzy Logic concepts. Afterwards an algorithm is presented for an
automated generation of forecast models using data from earlier flood events.

2 Fuzzy model for discharge forecasts

2.1 Motivation
In the last years, Fuzzy Logic based procedures have proven to be very efficient for analyzing
data and modeling the according processes. Especially they are used, when conventional
procedures are getting rather complex and expensive or vague and imprecise information
flows directly into the modeling process. With Fuzzy Logic it is possible to describe available
knowledge directly in linguistic terms and according rules. Quantitative and qualitative
features can be combined directly in a fuzzy model. This leads to a modeling process which is
often simpler, more easily manageable and closer to the human way of thinking compared
with conventional approaches.

2.2 Discharge forecast for the level Trier
In this section the structure of a fuzzy model is described on the basis of a simple discharge
forecast model. For simplification only discharges are used as input variables which are
measured at river upward locations and at the level to be predicted. Accordingly no rainfall
data or other variables are considered.

Actually, several fuzzy forecast models have been developed and are in practical use. In
this example a six hour fuzzy forecast model is described for the level at Trier/Mosel
(Germany) [Figure 1]. Inputs are the (river upwards) levels at Perl/Mosel, Fremersdorf/Saar,
Bollendorf/Sauer and Prümzurlay/Prüm. Measured data is used from nine previous flood
events for the generation of the model. Then the model is tested with four other flood events.
Level data is measured and provided regularly in one-hour periods. Figure 2 shows discharge
data for the above mentioned levels from flood event in January 1995. The size of the
catchment area of level Trier is about 23860 km2. The arithmetic mean of the discharge is
about 277 m3/s.
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Figure 1: Part of the basin of river Mosel with tributaries
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Figure 2: Discharge levels in January 1995

The forecast of the discharge at Trier is known to be difficult, because the two largest
tributaries Saar and Sauer meet the Mosel directly in front of Trier. Both the discharges within
the upper Mosel area and the discharges of Saar and Sauer alone can influence the flood
considerably. The waves arriving at a flood event at Trier at different times can lead to
different superpositions and flood cases, which have to be treated differently. The time lags of
the waves from the up-river levels to the level Trier amount from approx. six to ten hours.
The catchment area between these levels is not considered due to the too short time lags and
the limitation on discharge data of the simplified model.

Taking a look at the methods used by experts when manually generating a discharge
forecast one can see, that the influence of the various input levels is regarded differently with
respect to an intuitive estimation of the discharge situations in the regarded areas. These
situations are merging fluently and cannot be expressed by sharp numerical values. On the
other hand, the number of input variables (stations) which can be considered by the experts is
limited due to the complexity of the process.

The situations can be described typically in following form:

Situation i: Discharge at Perl at time (t1) is high and ... and
discharge at Fremersdorf at time (tk-j) is very_high ... and ... and
discharge at Perl between (tk-2,  tk-1) rises strongly and ...

The calculation of the six hours discharge forecast at level Trier (QTrier(t+6)) could be
carried out for the above situation as follows:

Situation i: QTrier (t+6) =A proportion p1 of the discharge at Perl (tk) +
a proportion p2 of the discharge at Perl (tk+1) +
a proportion p3 of the discharge at Fremersdorf (tk+2) +... +
a proportion pn of the discharge at Prümzurlay (tl).

The description of a situation and the calculation of the according discharge are
connected together in an IF... THEN... - Rule. The set of all rules created in this way results in
the rule base of the fuzzy model.

The flow times (t1, ..., tl) and the proportions (p1, ..., pn) of the intermediate catchment
area can be estimated by local experts or figured out by comparison with historical flood
events. Figure 3 shows the water level forecasts of the experts for the level Trier for the flood
event in January 1995. If colloquially formulated knowledge or experience should be used
directly for the generation of a forecast model, then fuzzy models can be used in an
advantageous way. This has been shown already for different application areas [suka, ne].
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Fuzzy models can serve to automate the forecast estimation, to support and relieve the experts
at a flood event, and to provide a comprehensible forecast estimation.
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Figure 3: Forecast produced by experts

2.3 Fuzzy concepts and representation of experiences
This section describes the representation of existing experience (e.g. about discharge
processes) by a fuzzy model based on Takagi Sugeno [tasu]. In addition the concepts of a
fuzzy model are briefly shown and translated into a practical discharge model.

Fuzzy Set
The classical theory of sharp sets can describe only the membership or non-membership

of an item to a set. A fuzzy set A over X is characterized by a membership function µA (x),
which assigns to each item of X a real number of the interval [0,1]. The value of µA  at x is
called truth value of x to the set A. A sharp set is a special case of a fuzzy set, if the
membership function can take only the values 0 and 1.

The range of the model input values, which are judged necessary for the description of
the situation, can be partitioned into such fuzzy sets. Figure 4 shows for example, how the
range for the discharge at level Perl is partitioned into three overlapping fuzzy sets (low,
middle, high).
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Figure 4: Linguistic variable of discharge in Perl with three fuzzy sets

The premise “the discharge at Perl is middle” is fulfilled in this example with a
discharge of 950 m3/s to 0.7. The truth value of the premise “the discharge at Perl is high”
amounts simultaneously to 0.3.
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Inference
If adjectives are assigned to these fuzzy sets, then these fuzzy sets can be combined to

colloquially formulated descriptions of situations. These descriptions are formulated in the
form of rule premises, whose sub premises are combined through AND-Operators. For the
forecast model such rule premises for example, may have the following form:

IF QPerl(t1) IS high AND QFremersdorf (tk-j) IS very_high AND ...

In a fuzzy system according to Takagi Sugeno the conclusion of each rule consist of the
summation of linear weightings of the input variables. If the same inputs are to be used in
each conclusion and different wave lag times should be considered at the same time for
example depending on a determined situation, then such conclusions can be read as follows:

THEN QTrier (t+6) =
QPerl(tk)*p1 + QPerl(tk+1)*p2 +
QFremersdorf(tk+2)*p3.+... +
QPrümzurlay(tl)*pn

The t1, ..., tl and p1, ..., pn represent model parameters, which have to be optimized to
achieve optimal forecast results. The parameters p1, ..., pn describe the proportional influence
of the respective inputs, and therefore they can be adjusted roughly based on experience.
Afterwards the parameters can be fine tuned and further optimized on the basis of filed data
from previous events.

The set of all rules results in a rule base, which reflects the experience of the expert. The
analysis of all rules of a rule base is understood as inference and supplies for a certain
combination of input values exactly one output value. For the calculation of this output value,
the entire truth value of each rule is determined and according to this value the output value of
each rule becomes part of the total result. Calculating the entire truth value of a rule is done
by combining the truth values of all sub premises of this rule with an AND operator. The
AND operator is assigned a mathematical function, i.e. the algebraic product. The structure of
such a fuzzy model can be formulated as follows:

The i-th rule is of the form

Ri : If x1  is Ai
1 ,  x2  is Ai

2 ,..., xn  is An
i ,

then  yi = p p x p xi i
n
i

n0 1 1+ + +...

where the A j
i  are fuzzy sets and yi  is the output of the i-th rule determined by a linear

equation with coefficients p j
i . The membership function of a fuzzy set A is written µA (x) or

simply A(x) and is composed of triangle functions. If the inputs x xn1 , ,Κ  are given, the truth
value wi of the premise of the i-th rule is calculated as
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2.4 Comparison of manual and fuzzy model based forecasts
A fuzzy model is easy to interpret, because it has colloquially formulated rules and the

calculation of the forecast is similar to the expert’s methodology. It can serve as a starting
point for the integration of further input variables. Thus more input variables could be used
than the human expert is able to consider or to handle. Once a fuzzy model is created, it needs
only less than 1 min. computing time on a 500 MHz-PC for the calculation of the forecasts
and it does not require any calibrating. The forecasts of a fuzzy model which was manually
created and optimized are presented in Figure 5 for i.e. the flood event in January 1995.
Compared with the forecasts of the experts (see Figure 3) it shows up that at least the same
forecast quality is achieved even without the consideration of measured rainfall values and
rainfall forecasts.
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Figure 5: Six hours forecast produced by fuzzy-model

If additional input variables like e.g. rainfall, temperatures, etc. should be used in the
model, then the expenditure for the generation and optimization rises significantly with the
increased number of decisions to be made during the design process and the increased
complexity of the parameter optimization task. In order to reduce the amount of manual tasks
during the generation process, one needs procedures for an automated generation of fuzzy
models. These automated procedures should partition the input variables into fuzzy sets,
produce the rules and optimize the conclusion parameters.

In the last years, a set of different procedures for different applications was suggested
[ne, suka, tasu]. In the following a procedure is presented, which has been developed and
implemented for a machine supported development and generation of fuzzy forecast models.

3 Automated generation of fuzzy rainfall-runoff models

3.1 Motivation
In the previous chapter the structure of a fuzzy model was presented on the basis of a forecast
model for the level of river Mosel at Trier. The model creation process requires design
decisions and parameter adjustments, both producing substantial expenditure if accomplished
manually. Unfortunately the expenditure rises non-linearly with an increasing number of input
variables. In order to create models with larger numbers of input variables but with reduced
manual expenditure machine supported procedures could be used. For the automated
generation of fuzzy models there exist already some principal approaches for typical
application fields [nhi]. In this section a machine supported procedure is presented for the
creation of fuzzy rainfall-runoff models.
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3.2 Steps for generating a fuzzy model
The steps needed for generating a fuzzy model are illustrated by a simplified flow chart in
Figure 6.

Definition of fuzzy sets and
Definition of rules

Optimization of conclusion parameters 

Is the model quality sufficient or 
is the abort condition fulfilled ?

noyes

Definition of input variables

End

Figure 6: Steps for generating a fuzzy model

Within the procedure for generating a fuzzy model the definition of input and output
variables describes the first step. In case of a rainfall-runoff model the output variable is
defined as the level to be predicted. Input variables are the measured and on-line available
values of the given catchment area, for example there are runoff, rainfall and temperature. In
the next step the input variables have to be partitioned into suitable fuzzy sets. Thereby the
total number, shape and position of the fuzzy sets have to be specified. Then suitable rules
have to be determined on basis of meaningful combinations of the fuzzy sets covering the
input space of the application.

For the partitioning of the input space for example cluster algorithms can be used.
Because clusters expressed by the fuzzy sets can overlap, fuzzy cluster algorithms are useful
[cla, hkk, stu]. Heuristic algorithms could also be used [ne, nhi, suka, tasu]. There exist
different strategies for the optimization of the conclusion parameters. The optimization may
be seen as a typical least-square problem, because the conclusion of each rule consists of a
linear equation. In this case the process for generating the rules has to fulfill some
preconditions which can be easily ensured [he]. Gradient procedures are also used for
optimization of the conclusion parameters, but they need often more computation time [bre].

3.3 Development system for fuzzy rainfall-runoff models (R-R models)
We have developed an algorithm and implemented an according system for the automated
generation of fuzzy rainfall-runoff models. The system supports all development steps for
building practical fuzzy forecast models as mentioned in the previous section.

At the beginning of the execution of this algorithm the user has to specify the following
items:

• the input variables of the model, the modeling and test data (i.e. filed events),

• the optimization criterion,

• a criterion, when to stop the generation process (abort condition).
Based on these information the implemented algorithm creates a rainfall-runoff model in

the following steps:

1) partition each potential premise variable in two fuzzy sets,

2) generate all possible rules,
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3) optimize conclusion parameters,

4) calculate model quality over all modeling data on the basis the optimization criterion,

5) for all potential premise variables: Determine, adding a further fuzzy set to which
variable provides the highest quality,

6) as long as the abort condition is not fulfilled go to 2).

The algorithm works as follows: In step 1) each input variable specified by the user is
partitioned into two fuzzy sets; next in step 2) these are added to the rule premises. Thus it is
guaranteed that each input is considered for the description of situation. In addition, the user
can accomplish a preselection of variables which should be taken into account. In step 3) the
conclusion parameters are optimized, which describe the quantitative influence of all input
variables. During this step the modeling data for example from previously filed events is used.
For that purpose the conclusions of the rules are treated as a linear set of equations and the
parameters are identified with the least square method. In step 4) the quality of the model is
determined using the specified optimization criterion. This criterion may be for example a
prediction which is as close as possible to the measured data in the area of the rising branch,
at the peak flow or over the complete range. In step 5) new fuzzy sets are inserted in most
promising premise variables. This is achieved by an iterative insertion and deletion of fuzzy
sets in all possible premise variables and the subsequent creation of rules and optimization of
parameters. If there is a variable with a new fuzzy set found, which results in the best
improvement of the model, then this fuzzy set is transferred to the new model. Steps 2) to 5)
are repeated until the abort condition specified by the user is not fulfilled. Further heuristics
can be added to this algorithm. For example, selected data areas of the process range can be
considered separately or preconditions can be inserted in order to reduce the number of fuzzy
sets and to further simplify the model.

The algorithm described above has been implemented in a development system for the
generation of fuzzy rainfall-runoff models. With this algorithm generated models are easily
interpretable, e.g. considering the influence of input variables and the relations between them.
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Figure 7: Scheme of the development system for an automated generation of R-R models

Figure 7 shows schematically the use of the development system. The model generator
uses the data of past events and the information provided by the user as stated above
(optimization criterion, etc.). The generation of a model takes few hours on a commercial PC
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(e.g. 500 MHz-PC). A model generated with this system for example is presented in Figure 7
as a characteristic diagram of two input variables. It may be used for forecasts without further
optimization or calibration. Additionally the determined rules of the fuzzy model can be
interpreted. This can be used to analyze or explain the relations and influences of the used
input variables as for example discharge values, rainfall values, temperature levels and data
for direct or indirect description of the vegetation.

Taking into account the system concept and the application requirements now modular
forecast models can be developed by starting for example with a model for an one hour
forecast. Forecasts for longer time periods can be achieved by an iterative arrangement and
execution of the one hour model; the forecast period is only limited by the available data of
rainfall forecasts. Models can be connected and forecasts of one model can be used as input
for a following model. In this way large catchment areas can be partitioned into smaller areas
and local models can be developed and combined to a complete model.

At present, first forecast models for rivers Mosel and Sieg are developed. Figure 8 shows
the results of the Trier/Mosel model for a six hour forecast from flood event in January 1995.
This model was developed with the procedure described above and additional rainfall data.
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Figure 8: Six hours forecast produced by fuzzy-model with rainfall data

4 Conclusion and Acknowledgement

The presented development system enables and supports the creation and execution of fuzzy
rainfall-runoff models. Practical forecast models can be built with little manual and temporal
expenditure. Available system data are analyzed automatically and the relationships are
presented as fuzzy rules. Dependencies between the input and output variables and their
influence within the discharge process can be detected. The created models can be used for
forecast or simulation purposes. Practical application of a model takes only seconds for
execution. Models can be developed in modular form and local models for example can be
combined to a model for the complete catchment area.

This work is partially supported by Stiftung Rheinland-Pfalz für Innovation and
Landesamt für Wasserwirtschaft, both Mainz, Germany.
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