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Abstract The pandemic spread of Coronavirus leads to increased burden on healthcare ser-
vices worldwide. Experience shows that required medical treatment can reach limits at lo-
cal clinics and fast and secure clinical assessment of the disease severity becomes vital.
Biomarkers are regularly determined for intensive care patients. Machine learning tools can
be used to select appropriate biomarkers in order to estimate the state of health and to pre-
dict patient mortality risk. Transparent prediction models allow further statements on the
properties and development of the biomarkers in connection with specific health conditions
of the intensive care patients.

In this work, alternative and advanced model approaches (Support Vector Machine,
naive Bayes, Fuzzy system) are compared with models proposed in literature. In addition,
aspects such as gender of patients and changes in biomarkers over time are included in the
modeling. An artificial neural network (SOM) is used for selecting the biomarkers. A statis-
tical analysis of the biomarkers reveals their values and changes in the critical state of the
patients.

In a model comparison, a Sugeno-type Fuzzy predictor achieved the best results for
health assessment and decision support. The Fuzzy system delivers continuous output values
instead of binary decisions and thus doubtful cases can be assigned to a rejection class. An
extended Fuzzy model takes into account the patient’s gender and the trend in key features
over time and thus provides excellent results with an accuracy better than 98% with the
training data. However, this could not be finally verified due to the lack of suitable test
data. The generation and training of all models was fully automatic with Matlab© tools and
without additional adjustment .
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1 Introduction

In [1] the outbreak of COVID-19 pandemic causing severe health concerns and conse-
quences for health care services worldwide has been described in a catchy way. It is stressed
that the severity of cases is putting medical services under great pressure. Furthermore, the
importance of distinguishing patients that require immediate medical attention is described
and that there is a lack of capacity to identify cases at imminent risk of death. Blood tests
and the identification of relevant biomarkers are considered the basis for important applica-
tions in connection with COVID-19 patients, such as a disease prognosis or an assessment
of the condition of a patient in the clinic [7]. So far, no prognostic biomarkers have been
determined to estimate the patients risks.

Consequently, the research group in [1] analysed blood samples of 485 patients from
the region of Wuhan, China. Then, a state of the art machine learning algorithm was used
to identify the most discriminative biomarkers. Most crucial biomarkers have been revealed
through optimization of a supervised XGBoost classifier [5]. Three key features have been
derived: lactic dehydrogenase (LdH), lymphocytes (Lymp%), and high-sensitivity c-reactive
protein (hs-CrP). A clinically operable decision tree (recTree) was developed and the de-
cision rules with the three features as predictor variables and their thresholds were devised
recursively by supervised learning.

The advantages of the recTree model are its simplicity and that it is easy to interpret, but
it only delivers binary decisions and only offers orthogonal hyperplanes for the delimitation
of predictor variables. There are many other possibilities for building a classification or pre-
diction model [9]. We examined another three of them with very little effort for creation: 1st
a Support Vector Machine (SVM), 2nd a naive Bayes classifier (nBayes), and 3rd a Sugeno-
type [3] Fuzzy classifier (Fis). All classifiers are transparent in explaining a specific input
transformation to a specific classification output.

The classifiers SVM and nBayes delivered binary predictions at least as accurate as the
classifier recTree. The classifier Fis is different from the three others as its output esteems
the grade about how much the input belongs to one of two classes (positive, neagtive) spec-
ified as patient outcome in the data samples. This may be an advantageous property when
predicting the patients risk value in practice.

There are also many possibilities for feature analysis and selection [10]. In our approach
we put emphasis on finding those features that show signatures similar to the patient outcome
and that are little to not correlated. Artificial neural networks of type Kohonen can be used
to map the distribution of features in the feature space into 2D component planes (maps)
revealing the signature of the according feature (Self Organizing Maps SOM [8]) . These
maps can be compared visually and those maps similar to the map of patient outcome can
be identified for feature selection. In addition, correlation analysis about the features can be
used to determine the minimum feature set covering the feature space in an efficient way,
e.g. in terms of a minimum dominant set (MDS). The key features selected in [1] have been
confirmed this way. Furthermore, two other features (Albumin, International Standard Ratio
(ISR)) have been proposed and than used with the Fis classifier in an extended analysis.

If one looks at the determined biomarker values in the data base created by [1], one will
of course notice a change in the biomarkers from the days before the last sample was taken
before discharge from the hospital. In addition, an analysis of the statistical characteristics
of the biomarkers shows that there are differences in the values for the two genders that ad-
vise separate use. It is therefore obvious to consider gender and the trend of the biomarkers
in the risk assessment. This is successfully examined here with an expansion of the Fuzzy
model. In this way, the Fis system enables a prediction of the mortality risk with an accuracy
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better than 98%. The time horizon can be up to approx. 20 days until the day of discharge,
although this is not a forecast but a risk prediction based on the patient’s health condition
before discharge. Ultimately, the Fis system shows potential for outstanding prediction re-
sults, although it must be said restrictively, that this has not yet been finally verified due to
insufficient test data.

2 Data resources

Basically, two data sets have been available for this study provided by [1]: trainData1 for
training and external testData2 for testing or verifying the models. trainData collects 74
biomarkers (features) together with age, gender, data sample time, admission time, discharge
time, and class of patient outcome (alive, deceased) for 375 patients. testData collects three
biomarkers LdH, Lymp%, and hs-CrP together with data sample time, admission time, dis-
charge time, and class of patient outcome for 110 patients. Of the 375 patients in trainData,
these three biomarkers are completely recorded in 351 patients. We have no biomarkers
recorded continuously and uniformly, on the contrary, the biomarkers are incomplete and
recorded at different times. To make matters worse, the data is not available as a time series
with a time profile and fixed time intervals. The temporal horizon of any predictor below
can only be estimated indirectly on the basis of the time delay between the date of the input
data and a specified date (discharge date).

In [1] only data of the final feature samples per patient is used for training and testing of
the rule decision classifier recTree. The distribution of patient outcome (positive: outcome
deceased, and negative: outcome alive) over the space of the three features are depicted in
Figure 1.

Fig. 1 Patient outcome in trainData (left) and in testData (right)

3 Feature and data analysis

Feature analysis can be carried out with different objectives: a) selection of the features for
best prediction results, or b) selection of features for an optimal description of the patient’s

1 time series 375 prerpocess en. xlsx
2 time series test 110 preprocess en.xlsx



4 Peter Gemmar

state of health. The results do not have to be the same but not contradictory. In [1] feature
analysis resulted in determination of three features LdH, Lymp%, and hs-CrPout of 10 most
promising features found with optimal XGBoost classifier output. Our approach looks for
features that correspond in their distribution to the patient’s outcome and then selects a
minimum number of features that cover the input space well. The biomedical relevance of
the biomarkers was initially not taken into account, but the selection found makes it possible
to draw conclusions about the biomedical relevance and the relationship of the biomarkers
to the prediction goal.

Here, feature analysis is accomplished in two steps: 1) a Kohonen neural network (SOM)
is used for transforming the feature data into component planes CP, and 2) a Greedy algo-
rithm is used for finding the minimum dominant set MDS of features based on their mutual
correlation. Both, CP and MDS can be rendered and visually inspected. Figure 2 shows the
component maps of 10 features selected by [1] after training SOM with 344 complete data
samples in train data. The map size of SOM was 8 ·3 = 24 neurons.

Fig. 2 Component planes CP (map size [8,3]) of 10 features (biomarkers) and patient outcome created by
training SOM network with train data

The component planes represent the weights of the respective feature in each neuron
(hexagon) of the SOM map. Each map position (hexagon) represents the weight value in
color, and together with its neighbours around it corresponds with similar inputs (feature
vectors) of the training set. A good approach for analyzing is to look for boundaries and
color changes in a component plane and similar situations in other planes (colors must not
be similar). In this way we recognize good matches in Figure 2 between outcome, Lactate
dehydrogenase, (%)lymphozyte, Hypersensitive c-reactive protein, and with some restric-
tions also albumin and International standard ratio. The first three features correspond to the
features selected for recTree and replicate the results of XGBoost classifier.

The second step of our feature analysis is to find the minimum dominant set MDS of
features. For this, the mutual correlation of feature elements are evaluated and a greedy
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Fig. 3 Correlation graph (lines show mutual correlation with threshold = 0.95)

algorithm searches MDS after determination a threshold for mutual feature correlation [6].
Figure 3 shows the resulting correlation graph. We see the features Lactate dehydrogenase,
(%)lymphozyte, and Hypersensitive c-reactive protein cover very well the MDS when we
restrict it to the features with good matches with patient outcome. A strictly reduced MDS
would consist only of (%)lymphozyte, and Hypersensitive c-reactive protein.

Feature distribution aspects

When selecting a suitable classifier method, both the distribution of the elements in the
feature space and the class-conditioned distribution of the feature values themselves are
important. We now consider the latter based on the patient’s outcome class. Figure 4 shows
the histograms of the three features for the last samples in trainData. And accordingly Figure
5 shows this for testData. The features are neither uniformly distributed nor disjoint, which
may influence the choice of the predictor method and parameters.

Fig. 4 Histogramm of main biomarkers LdH, Lymp%, and hs-CrP (from left to right) in trainData (last
sample)
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Fig. 5 Histogramm of main biomarkers LdH, Lymp%, and hs-CrP (from left to right) in testData (last sample)

Gender aspects

Biomarker values are usually different for women and men. Accordingly, we also consider
the values of the three biomarkers separately by gender in testData; trainData does not
contain patient gender information. There are similarities in the distribution but also cer-
tain differences in the numerical values of the biomarkers with regard to the two outcome
classes (please refer to the supplements for details). This becomes clear quantitatively when
one compares the statistical values mean and standard deviation of the biomarkers (Table 1).
These differences can also be seen in the values of the biomarkers immediately after admis-
sion to the hospital (Table 2). We can see a trend in biomarkers from the day of admission
to the day of discharge: LdH increases on average for the deceased and decreases for the
survivors, Lymp% decreases for the deceased and hs-CrP decreases for the survivors.

Biomarker LdH Lymp% hs-CrP
mean ± std mean ± std mean ± std

female alive 208.6±60.1 26.8±10.0 13.6±29.6
female deceased 727.2±320.0 5.5±2.9 113.0±72.7
male alive 218.9±70.2 25.1±10.3 10.3±19.9
male deceased 803.0±469.2 6.1±6.8 135.5±80.1

Table 1 Satistical values mean and standard deviation (std) of selected biomarkers for women and men in
trainData (last sample)

Biomarker LdH Lymp% hs-CrP
mean ± std mean ± std mean ± std

female alive 246.6±83.7 26.7±10.7 25.8±36.4
female deceased 550.4±256.1 7.6±4.9 118.0±106.6
male alive 276.7±134.0 22.1±11.5 44.9±47.9
male deceased 622.1±394.8 14.5±77.8 147.6±190.5

Table 2 Satistical values mean and standard deviation (std) of selected biomarkers for women and men in
trainData immediately after admission

4 Building a prediction model

Various methods are available for developing a predictor model [9]. In principle, one can
differentiate between deterministic and probabilistic models. The former calculate nominal
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values z(c|X) ∈ {0,1} as a membership degree of an input element X belonging to a class c,
the latter calculate the posterior probability P(c|X) ∈ [0,1] with which an input element X
belongs to a class c, which makes a big difference. It is also important to consider whether
the objective is to identify a trend or a fact. Furthermore, a distinction can be made between
models with categorical and continuous output values.

In [1], a recursive decision tree (recTree) is chosen as the predictor model. With three
input variables and the associated threshold values, the input space is divided by means
of orthogonal discriminating hyperplanes into two class regions. The output is categorical
(binary) and therefore an input element X is always assigned with the membership z(c|X) =
1 to one of the two possible classes c ∈{positive, negative}. A trend in the input data is not
considered with this model. The advantage of recTree is its simplicity and interpretability,
which can be advantageous for practical use in a decision-making process. A disadvantage
is the lack of plasticity in the linear decision hyperplanes in the case of an inhomogeneous
distribution of the training samples.

Other nonlinear geometric and categorical predictor models such as Support Vector Ma-
chine SVM or k-nearest neighbour kNN are much more flexible, but unfortunately not as
transparent and therefore more difficult to interpret. With k-nearest neighbour, assignments
to similar patterns from the training set and thus classifications can be made. Initial tests with
kNN were not promising and are therefore not considered further. With SVM, the margin be-
tween the support vectors of both classes that are equally closest to a decision boundary
D(X) can be maximized. Input vectors X are thus assigned to the class depending on their
position above or below the decision boundary D (D(X) > 0 or D(X) < 0). In cases of
overlapping classes soft margin hyperplanes can be used that separate many but not all data
points X .

The class-conditioned distribution of the three biomarkers is not disjoint, as can easily
be seen in Figure 1. This raises the question of whether a probabilistic predictor model is
better suited. This would then provide an indication of how likely an element belongs to
either class positive or negative, but not to what degree the element belongs to a class due to
its biomarkers. A possible probabilistic model can be created quite simply with a so-called
naive Bayes model. For this purpose, the multivariate distribution p(X |c) of the input data
points X is modeled and an input element X is assigned to class c, which has the greatest
posterior probability P(c|X), depending on the prior class probability P(c) (Bayes’ Rule).
But who do you trust more in practice, the likelihood or the degree of class membership?

So the objective remains still to find a transparent model for the medical decision-
making process that is sufficiently adaptable, does not necessarily provide a binary decision
and can also take temporal developments into account. A Fuzzy model Fis is recommended.

We assume a human decision maker would prefer to refer to the technical estimation of
risk grades when finally deciding about the risk and clinical treatment of patients. Further-
more, the mapping of biomarkers by humans likely will rather be in terms like small, high,
or something unsharp like that than in sharply defined intervals. Fuzzy systems enable the
description of models based on Fuzzy rules of type Ri : IFx1 is small AND x2 is large . . .
T HEN yi is small with input vector X = (x1,x2, . . .)t in the premise (IF) part and output yi
in the conclusion (T HEN) part . Building up a Fuzzy model requires first the definition of
unsharp terms like small, medium, . . ., so called Fuzzy terms, covering the input elements
(fuzzyfication) and second the generation of the rule base R = {Ri|i = 1,2, . . . ,N} describing
the complete mapping of the input space into the output function. Finally, the mapping of the
rule’s outputs yi (accumulation) into a sharp output value y = f (yi|i : 1, . . . ,N),y ∈ R has to
be established. Fortunately, there are a lot of machine learning tools that can automatically
generate an operable Fuzzy model from training data (supervised learning).
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We used a Sugeno-type Fuzzy modell [3] with linear functions yi = f (X) in the con-
clusion part and Matlab© function ANFIS for generating and training of the Fuzzy model.
With trainData and three features as input ANFIS creates a Fuzzy model Fis with three
Fuzzy terms per feature and N = 33 = 27 rules. The model is trained by ANFIS with 10
epochs and trainData with all 351 patient’s final data samples only. Figure 6 shows predic-
tion results of Fis for validation with trainData and verification with external testData.

Fig. 6 Prediction results of Fis classifier validated with trainData (left) and tested with testData (right); false
classified data points circled

5 Estimation of prediction output

Some details on the development of the Fis model are described below. First, however, there
is a performance comparison of the four model approaches recTree, SVM, nBayes, and Fis
with the training data trainData and test data testData. The performance comparison con-
sists of two steps (except recTree defined in [1]) : 1) modeling with 10-fold cross-validation
from trainData (always patient’s last sample), and 2) testing the models with the fewest total
errors in 10-fold cross-validation with trainData or testData completely. For evaluation of
the classifier results the following performances measures have been considered: total num-
ber of classification errors E, sensitivity = T P/(T P+FN), specificity = T N/(T N +FP),
and accuracy = (T P+ T N)/(T P+ T N + FP+ FN); TP, TN, FP and FN stand for true
positive, true negative, false positive and false negative rates.

The four models described above delivered the same results when tested with three
biomarkers from testData, which is primarily attributable to the distribution of the test events
(see columns test in Table 3). In cross-validation, however, the Fuzzy model Fis delivers
better results than the other models.

We know the appropriate data representation often improves the effectiveness of a model
more than different methods for model building. For this reason, we also considered inter-
acting data in addition to the selected biomarkers. We examined the effect of the interacting
features gender and age on the main biomarkers Lymp%, LdH, and hs-CrP. Since age and
gender are not included in testData, we performed a 10-fold cross-validation with trainData
and selected the best model than for testing with complete trainData. These investigations
were only possible with the SVM, nBayes, and Fis models. For the comparison, the mod-
els are trained with standard settings for the task and without manual optimization in order
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recTree SVM nBayes Fis
validation test validation test validation test validation test

errors total 9 3 8 3 10 3 5 3
sensitivity (%) 98.1 92.3 98.1 92.3 98.1 92.3 98.7 92.3
specificity (%) 96.9 97.9 96.9 97.9 96.4 97.9 98.4 97.9
accuracy (%) 97.4 97.3 97.4 97.3 97. 2 97.3 98.6 97.3

Table 3 Performance data of models during validation with trainData (351 samples) and verification (test)
with testData (110 samples)

to recognize the basic potential. Even if the accuracy of the models was not significantly
improved with the addition of a further biomarker and or the patients’ age, the Fuzzy pre-
dictor here reaches a specificity of 100%. However, this was also achieved by considering
the patients’ gender with the Fuzzy predictor and three biomarkers. The influence is also
dependent on the predictor model, whereby it should be noted that with the addition of the
interacting features, the models become more complex and the size of the training data can
become too small for the supervised learning (see supplementary information for details).

Even as a medical layperson, it can be assumed that the patient’s physiological state
and the health risk can also be judged by the development of the biomarkers over time and
not only by their last value. Therefore, we tried to include the biomarkers’ trend in time
into the model for risk assessment. However, it is now the case here that the blood samples
and thus the biomarkers in the data records were not systematically recorded over time.
Thus, it is only possible to determine the temporal trend here as an example. To do this,
we simply chose the gradient as weighted difference between the last and penultimate data
sample as a measure for the trend over time. The results were positive for all models and
with ideal results for Fis (see supplementary information for details). The very good results
of all models with the gradient of a biomarker are to be judged cautiously, because ideal
overfitting cannot be ruled out because of the relatively small number of training samples.
Nevertheless, it remains a clear indication that the gradient of the biomarkers is an important
feature for mortality risk prediction.

In comparison of the models, the Fuzzy Model Fis has a high degree of flexibility and
provides the best performance data. In addition, the primary model output specifies the de-
gree ∈ [0,1] to which an input can be assigned to class positive, for example, and thus offers
the possibility for further interpretations. Since there is a two-class problem here, a rejec-
tion class critical can be introduced for model issues in the disputed area, for example for
degrees around 0.5± 0.1. Figure 7 shows the results of the Fis classifier with two classes
plus rejection and how rejected elements are distributed in the input space.

This supports an interpretation of the model output by medical professionals. If one
looks at the real risk values that model Fis calculates for the external test data, one can see
that the wrongly classified items in most cases are very close to the decision limit θ = 0.5..
Figure 8 shows the statistical values of the risk assessment with the training and test data
using boxplots. After assigning the incorrectly classified examples (FN = 2, FP = 1 in Figure
7), the associated boxplot shows that the real output values are close to the decision value
θ and can therefore be better assessed by a medical expert than the wrong binary decision.
The continuous model output enables further opportunities for technical support for medical
experts in COVID-19 risk assessment.
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Fig. 7 Distribution of patient samples in trainData (left) and testData (right) classified with Fis in two classes
positive, negative plus rejection critical; false classifications with circles

Fig. 8 Statistical distributuion of risk assessment (real model outputs) with prediction model Fis and training
data trainData (left) and test data testData (right), boxplots with 25, 75 percentil (blue), median and outliers
(red)

Time horizon

With regard to the prediction horizon, it was already criticized above that there is no actual
time series for the biomarkers and that a trend cannot be determined uniformly. In order to
be able to make statements about the forecast horizon under this restriction, the time delays
between the classified facts and the discharge date can be considered. For this purpose, the
Fis model with three input features LdH, Lymp%, and hs-CrP was used to predict the mor-
tality risk of the last and penultimate samples from trainData and determine the time delay
from the recording date of the biomarkers (all three markers recorded at the same day) to the
discharge date. Figure 9 shows the distribution of the correct and incorrect risk prediction
values with regard to the time delay and also the relative accuracy of the prediction. How-
ever, this consideration can only be interpreted as how many days before the discharge the
patients had reached a state of health so that it could be decided how the discharge would
be (deceased or alive). This should not be confused with a forecast, because it would say
something about the future development of the patient’s health status and ultimately about
the expected discharge status.
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Fig. 9 Histogram of the correct and incorrect mortality risk values estimated in days before the discharge and
the corresponding accuracy with Fis with three inputs LdH, Lymp%, and hs-CrP; days are the time interval
between the recording date of the data and the patient’s discharge date

Fis model characteristics

The Fis model is represented by its rule base, making it transparent and relatively easy to
interpret. Figure 10 shows a rule base with N = 32 = 9 rules for a Fis model with two input
variables LdH and Lymp% (reduction of model complexity for ease of presentation). The
resulting decision surface of the predictor model is also shown in Figure 10.

Fig. 10 Rule base (left) and decision surface (right) of Fis model with two input variables LdH and Lymp%
and N = 9 rules

It is a practical experience to build models with as few rules as possible and to achieve
the desired plasticity. In purely automated approaches, which is the case here, all the input
variables are used with a uniform number of membership functions in the rules. If we use
three biomarkers as input variables and define three membership functions for each vari-
able, we get a rule base with N = 33 = 27 rules. Each membership function is described
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by a parameter set, e.g. three parameters for generalized bell-shaped membership function
(Matlab© glbellmf ). The output of a rule is formed by a linear combination of the input
variables and then summarized linearly over all rules (e.g. weighted average). This results
in J = N ∗ (3+1)+N = 135 parameters in total in this example. These parameters are opti-
mized in an adaptive neural learning process (Matlab© ANFIS). From personal experience,
it also applies here that at best about 10 training samples should be available for each param-
eter. This would require, for example, 1,350 training examples in the training set trainData.
However, since there are significantly fewer training samples (≤ 351) and still very good re-
sults achieved, it cannot be ruled out that the models are overfitted to the training examples.
This problem is counteracted during training with 10-fold cross-validation. The limits can
also be seen from the fact that Fis models with more input variables do not achieve better
results, because already a Fis model with four input variables generates a rule base with
N = 81 rules and J = 441 parameters in total. trainData is clearly too small for automatic
model optimization with more than three input variables.

6 Discussion

This study shows the potential of Fuzzy models for the mortality risk assessment of COVID-
19 intensive care patients in several ways. First of all, the results of Fis are continuously
better than in literature ([1]) and no other of the methods considered here achieved better
results. The Fis system also enables non-binary risk assessments and thus a differentiated
assessment of the patient’s health condition. The consideration of patients’ gender as an
interacting feature improves the prediction performance, whereby it should be noted when
developing the model that only about half of the size of the training data is still available.

The consideration of the temporal development of the biomarkers in the models had a
decisive influence on the model performance. However, this could not be tested in detail
because the training and external test data contained too few examples and in particular the
blood samples had not been recorded systematically over time. For further model examina-
tion based on these positive results, more and systematically recorded training and test data
are absolutely necessary.

The Fis model is transparent and its decision is easy to convey in an operational model
application. No special optimization options were used here. However, it can be assumed
that with specially selected and dimensioned Fuzzy membership functions for the input
data, a simplification of the system can be achieved with the same performance.

7 Conclusion

In summary, this study compares a Fuzzy logic based prediction system for COVID-19
mortality risk assessment of intensive care patients with other deterministic and probabilistic
prediction methods evaluated here or in literature ([1]). It could be shown, that Fuzzy logic
based prediction delivers the best performance data in terms of accuracy, sensitivity and
specificity. This provides a good basis for the development of a transparent and operational
system for risk assessment of COVID-19 patients. It is advised, that patients’ gender and
feature changes over time be integrated in the model input. The model output is non-binary
and is therefore particularly suitable for a decisive interpretation by medical experts. An
investigation of the time horizon was carried out to the extent that the time from the critical
patient condition to discharge was determined. There is still great potential here for further
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investigations into the course of the medical features up to the discharge of the patients, for
which patient data are required as suitable time series. This also includes the development
of a prediction model for COVID-19 patients with mild symptoms.
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