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Abstract
The understanding about the minimum width of deep neural networks

needed to ensure universal approximation for different activation functions
has progressively been extended [PYLS21]. In particular, with respect to
approximation on general compact sets in the input space, a network width
less than or equal to the input dimension excludes universal approximation.
In this work, we focus on network functions of width less than or equal
to the latter critical bound. We prove a maximum principle from which
we conclude that for all continuous and monotonic activation functions,
universal approximation of arbitrary continuous functions is impossible
on sets that coincide with the boundary of an open set plus an inner
point. Conversely, we prove that in this regime, the exact fit of partially
constant functions on disjoint compact sets is still possible for ReLU
network functions under some conditions on the mutual location of these
components.

1 Introduction
In the course of the increasing popularity of deep neural networks for applications
in technical, ecological and many other fields, there has been huge progress in
the research on understanding the mathematical properties of the mathematical
mapping implemented by a deep neural network. The approximation properties,
or expressiveness, of neural network functions have attracted intense interest. The
central result in this field is the classic universal approximation theorem, which
states that any continuous function can be approximated with arbitrary accuracy
(in terms of uniform approximation or Lp norms) by neural network functions that
have only one hidden layer for nearly every activation function [Cyb89, Hor91].
In recent years, these kind of results have become more precise, for instance, in
terms of estimates on the order of magnitude of parameters needed to achieve an
approximation of a certain accuracy [PV18, Yar17, Yar18], or by investigating
the number off piece-wise linear regions [MPCB14, STR18, HR19]; we refer to
[DHP20] for an overview on recent developments. Since empirical observations
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showed that depth has a significant impact on the performance of neural networks,
a lot of research has been dedicated to the effect of depth on the expressive power
of neural networks [Tel16, MP16, MPCB14, RPK+17, RT18, LTR17, CSS16].
Besides this, the role of width in expressiveness of network functions has been
investigated [LPW+17, HS17, Han19, Joh18, KL20, PYLS21]. An important
result given below states that a width larger than the input dimension is needed to
allow universal approximation on arbitrary compact sets. It has also been shown
that the capability to learn disconnected or bounded decision regions depends
on whether the width is larger than the input dimension [NMH18, BDCS21].

In a further line of research, the capabilities of neural networks to memorize
finite sample sets is investigated [YSJ19, Ver20, BELM20, PLYS20], which
provides mathematical foundations to the surprising findings that neural networks
can interpolate the training data [ZBH+17] in practise.

In this work, we investigate what kind of subsets M ⊂ Rn admit universal
approximation by neural network functions with a maximum layer width less
than or equal to the input dimension, i.e. network functions that violate the
necessary condition for universal approximation given in hanin2017universal and
park2020minimum for arbitrary compact sets.

Let us introduce the following notation: For a set D ⊂ Rn we denote by D◦
the set of interior points, by D its closure and by ∂D = D \D◦ the boundary
of D. By ‖·‖ we mean the Euclidean norm. For a linear subspace U ⊂ Rn, we
denote by dim(U) its dimension and by PU : Rn → U the orthogonal linear
projection on U . We denote by ej the unit vector of the j-th coordinate axis in
Rn. For some v ∈ Rn and j ∈ {1, ..., n}, we write v(j) for the j−th component
of v.

For some depth L ∈ N, we consider neural network functions of some ,
F : Rn0 → RnL where n0 is called the input dimension and nL the output
dimension. Our network functions have the following form

F :=WL(AL−1 ◦ ... ◦A1) + bL (1)

where Aj(x) = σ(Wjx + bj) with Wj ∈ Rnj×nj−1 (weights), bj ∈ Rnj (bias),
where j = 1, ..., L, and σ : R → R the activation function. The application
of σ and the inverse image σ−1 are understood to be applied element wise to
vectors or subsets of Rn. The widely used activation function rectified linear
unit, shortly ReLU, is defined by t 7→ max{t, 0}. As a shorthand notation of the
function implemented by the first k layers of a network function, we set

Fk =Wk (Ak−1 ◦ ... ◦A1) + bk, (2)

for k ∈ {1, ..., L− 1}. We call nj the width of layer j = 1, ..., L. The width of the
network is defined as ω(F ) = max{nj : j = 1, ..., L} and L is called the depth
of the network. For m,L ∈ N and an activation function σ, NN k

σ(m,L) is the
set of network functions F : Rn0 → Rk of the form (1) with activation σ and
of maximum width m, i.e. ω(F ) ≤ m, and depth L, i.e. L layers including the
final linear layer. In case that Rk = R we omit the latter and write NN σ(m,L)

2



instead, and in case the the depth is not specified, meaning that arbitrary depth
is allowed, we write NN k

σ(m), NN σ(m), respectively.
We say that a compact subset M ⊂ Rn0 admits universal uniform approxi-

mation of functions in some function class of mappings from M to R by network
function of NN σ(m,L) or NN σ(m), if for every f :M → R in that class and
every ε > 0, there exists some F ∈ NN σ(m,L), respectively F ∈ NN σ(m),
such that

max
x∈M
|f(x)− F (x)| < ε. (3)

2 Related work
Approximation properties of width bounded neural networks have been studied in
several papers. A common goal in these lines of research is to provide upper and
lower bounds on the minimum width of the network, i.e. the minimum number
of neurons per layers, here denoted by ωmin, needed for universal approximation
in C(M,RnL), i.e. the space of continuous functions from a compact set M
to RnL endowed with the norm of uniform convergence, and Lp(M,RnL) with
some set M ⊂ Rn0 , i.e. the space of functions f = (f1, ..., fnL

) from M to RnL

such that every |fj |p is integrable over M , endowed with the usual Lp norm.
Since in this work we are interested in universal approximation in C(M,R),
we refer to lu2017expressive, kidger2019universal and park2020minimum for
the case of Lp approximation. For the case of C(M,RnL), it was proven in
hanin2017approximating that

n0 + 1 ≤ ωmin ≤ n0 + nL, for ReLU activation, (4)

which has been tightened in park2020minimum to

ωmin ≥ max{n0 + 1, nL} for ReLU and STEP activation, (5)

where STEP refers to the threshold activation that maps to 1 on {x ≥ 0}
and 0 otherwise. It has been shown at the same time in johnson2018deep and
beise2018decision that

ωmin ≥ n0 + 1 for ReLU + injective continuous activation. (6)

The activation functions allowed in johnson2018deep are slightly more general,
as it is only required that they admit arbitrary accurate uniform approxima-
tion by injective continuous functions on arbitrary compact subset of R. In
kidger2019universal the above upper bounds are extended to further classes
of activation functions. For these results and a general overview on recent
developments in this field, we refer to park2020minimum. As we also formulate
results for finite sets, our work partially exhibits relations to the research on
finite sample memorization [YSJ19, Ver20, BELM20, PLYS20].

In this work, we only consider width less than or equal to n0 and investigate
uniform approximation on certain compacts subsets of the input space. According
to the above result (6), we cannot expect universal approximation for all compact
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M ⊂ Rn0 . However, a common assumption in applications is that approximation
is only needed on a certain subset. We derive some topological conditions on M
that allow or exclude a kind of universal approximation under these circumstances.
Although narrow neural networks, as they are considered in this work, are not
common in practical applications, many networks exhibit a decaying layer width
at the later layers. From this perspective, our results give theoretical insights on
the kind feature extraction earlier layers need to implement in order to allow
the later layers to solve a given machine learning task. Our main contributions
are as follows:

1. A maximum principle is given for F ∈ NN σ(n0) with σ continuous and
monotonic. This allows to conclude that the lower bound ωmin ≥ n0 + 1 in
(6) is sharp for a wide range of subsets M , e.g. when M = ∂D ∪ {c} for
some D with non-empty interior and c ∈ D◦.

2. We show that for the case of two disjoint compact sets, the existence of a
cone-like sector that contains one of these sets and does not intersect with
the other one, is sufficient to allow exact fit of functions that take constant
values on each of these sets by network functions from NNReLU(n0, 4).
A weaker result is concluded for the case of multiple pairwise compact
components.

3 Maximum principle
Let us recall that NN σ(n0) designates the set of network functions with activa-
tion function σ, having maximum width n0 and arbitrary depth. In this section,
we will prove a maximum principle for network functions of NN σ(n0) for a wide
class of activation functions. This principle can be viewed as a root cause why
universal approximation with functions from NN σ(n0) on arbitrary compact
sets is impossible as shown in johnson2018deep and beise2018decision, see (6).
This also immediately leads to a topological condition on subsets of Rn0 that do
not admit universal approximation by functions in NN σ(n0).

Theorem 1 (Maximum Principle). Let M be some compact subset of Rn0 and
σ a continuous, monotonic activation function. Then every F ∈ NN σ(n0) takes
its maximum value at the boundary ∂M .

Note that, considering −F instead of F , the latter result also implies that
the minimum value is taken on ∂M . This implies that universal uniform approx-
imation of continuous functions is impossible on compact sets with non-empty
interior. Even more, it can be concluded that:

Corollary 1. Let M be some compact subset of Rn0 such that ∂D ⊂ M and
M ∩D◦ 6= ∅ for some non-empty open set D ⊂ Rn. Then M does not admit
universal uniform approximation of continuous function by network functions
from NN σ(n0).
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The latter results naturally lead to the following question: Is it possible to
uniformly approximate arbitrary continuous functions on the unit sphere (in
Rn0) with arbitrary accuracy by network functions as they are considered in
Theorem 1? Some positive approximation results are given in the next section,
but a gap to an answer to the question remains.

Obviously, the maximum principle is false in case of non-monotonic activation
functions. But it is not clear to us whether the conditions of Theorem 1 can be
weakened in a way that it also applies to network function having width larger
than the input dimensions under certain circumstances. The following might
be a natural question in this context: Let F : Rn0 → R be a neural network
function of arbitrary width but with weight matrices having rank less than or
equal to n0. Does a maximum principle similar to Theorem 1 apply in this case?
The following example shows that the maximum principle in Theorem 1 does
not hold in this case.

Example 1. Let M = [−1, 1] and let W1 ∈ R2×1 and b1 ∈ R2 implement the
following linear affine mapping

W1x+ b1 =

(
x+ 1
x

)
.

Then M1 = ReLU(W1M + b1) is given by M1 =M1,1 ∪M1,2 where

M1,1 := {(x+ 1, 0)T : x ∈M, and x < 0}

M1,2 := {(x+ 1, x)T : xT ∈M, and x ≥ 0}.

Now, let v = (1, 1/2)T ∈ R2, W2 ∈ R2×2 and b2 ∈ R2 such that x 7→ W2x+ b2
implements the orthogonal projection onto the hypersurface V := {x ∈ R2 :
xT v = (1, 0)v}. That is, the hypersurface orthogonal to v which intersects
(1, 0)T . Then both, M1,1 and M1,2 are mapped to the line M2 := {y ∈ R2 : y =
(1, 0) + λ(−1/2, 1), 0 ≤ λ ≤ 1/2} and since those vectors are contained in the
first quadrant we have

M2 = ReLU(W2(ReLU(W1M + b1) + b1).

It can further easily be verified that, under the latter two layer network function,
0, which is an inner point of M , is the only vector that is mapped to the extreme
point (1, 0) of M2. Now it is easy to find a weight W3 ∈ R2 such that the linear
map x 7→ W3x as a mapping from M2 to R takes its minimum or maximum
value at (1, 0) only.

By concatenation of additional components to the input dimension such that
M = [−1, 1] × [0, 1]d, d ∈ N, and adaptation of the weights W1,W2 and bias
b1, b2 in a way that these additional components are mapped identically under the
action of the two layer network function x 7→ ReLU(W2(ReLU(W1x+ b1) + b1),
the above example can be extended to higher dimensions.

The following proposition provides the main observation for the proof of
Theorem 1.
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Proposition 1. Let M be a compact subset of Rn0 , σ a continuous, monotonic
activation function and F ∈ NNn0

σ (n0) such that all weight matrices Wj, j =
1, ..., L, are square and have full rank. If for some x ∈ M◦ the image F (x) is
a boundary point of F (M), i.e. F (x) ∈ ∂F (M), then there is an x̃ ∈ ∂M such
that F (x̃) = F (x).

Proof. In case that σ is injective, the whole network function F is injective
since the weight matrices are assumed to be square and of full rank. Hence,
the invariance of the domain theorem gives that no x ∈ M◦ can be mapped
to ∂F (M). The remaining case is that σ is partially constant. Then, given an
x ∈M◦ with F (x) ∈ ∂F (M), let k̃ be the smallest k ∈ {1, ..., L− 1} such that
σ(Fk̃(x)) ∈ ∂σ(Fk̃(M)). Notice that such a k̃ must exist since, according to
the invariance of the domain theorem, the last injective, linear affine mapping
x 7→ WLx cannot map inner points to boundary points. Then, necessarily for
at least one component of Fk̃(x), a partially constant part of σ is active. More
explicitly, say (Fk̃(x))

(j) ∈ [aj , bj ] ⊂ R with σ(t) = cj , where cj is the constant
value taken for all t ∈ [aj , bj ], for some indices j ∈ I ⊂ {1, ..., n0}. In case that
one of those intervals can be enlarged arbitrarily to either [aj ,∞) or (−∞, bj ],
which would be the case for ReLU activation, we can find a t ∈ R such that
xk̃ = Fk̃(x) + tej ∈ ∂Fk̃(M) and with σ(xk̃) = σ(Fk̃(x)). In a next step we show
that such an xk̃ can also be found in cases where the length of the intervals [aj , bj ]
are upper bounded. In those cases we may assume that the intervals [aj , bj ] are
maximum in the sense that at their left and right end σ is not constant any
more, and I is maximum in the sense that for every other index, the activation
function σ is injective in a neighbourhood. Indeed, if such components would
not exist, the component wise application of σ would be injective in a small
neighbourhood of Fk̃(x) and the invariance of the domain theorem would exclude
that σ(Fk̃(x)) ∈ ∂σ(Fk̃(M)). By the selection of k̃, Fk̃(x) is still an inner point
of Fk̃(M). The fact that the inner point Fk̃(x) ∈ (Fk̃(M))◦ is mapped to a
boundary point by the element wise application of σ implies that there is some
non-empty Ĩ ⊂ I with corresponding tj ∈ R such that

tj ∈ [−(Fk̃(x))
(j) + aj ,− (Fk̃(x))

(j) + bj ], j ∈ Ĩ (7)

xk̃ := Fk̃(x) +
∑
j∈Ĩ

tjej ∈ ∂Fk̃(M). (8)

Indeed, otherwise,

Fk̃(x) +

n0∑
j=1

tjej ∈ (Fk̃(M))◦

where for some small ε > 0 and all j ∈ I, tj may be chosen arbitrarily in
(−(Fk̃(x))(j) + aj − ε,−(Fk̃(x))(j) + bj + ε) and ε > |tj | > 0 for j /∈ I. By the
definition of I and the corresponding intervals [aj , bj ], this would imply that
σ
(
Fk̃(x)

)
is an inner point of σ

(
Fk̃(M)

)
. Now, (8) implies that there is a x̃ ∈M

such that

Fk̃(x̃) = Fk̃(x) +

n0∑
j=1

tjej ∈ ∂Fk̃(M),
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with tj as in (7). Considering that Wk̃ is square and has full rank, the inverse
image of Fk̃(x̃) under x 7→Wk̃x+ bk̃ is a boundary point of σ(Fk̃−1(M)) in case
that k̃ > 1 and a boundary point of M in case when k̃ = 1. In the last case we
are done. In the first case, the same reasoning can be applied to x̃ instead of
x, and the iterative application finally leads to a boundary point of M that is
mapped to σ

(
Fk̃(x̃)

)
= σ

(
Fk̃(x)

)
and hence follows the same trajectory when

passed through the last layers from k̃ to L.

Proof. (Theorem 1) We may assume thatM◦ is non-empty and that every weight
matrix Wj , j = 1, ..., L− 1, is square and of full rank. Otherwise the result is
trivial, because F (M) = ∂F (M). Hence the assumption of Proposition 1 holds
for F̃ = AL−1 ◦ ... ◦ A1. Since the linear mapping x 7→ WLx from RnL−1 to R
takes its maximum and minimum values on ∂F̃ (M), the latter proposition also
implies that F takes its maximum value on ∂M .

4 Approximation properties on subsets
In this section we give some approximation results that show that, despite the lim-
itations induced by Theorem 1, the network functions considered in this work still
allow some weaker kind of universal approximation on subsets. The first result in
this section follows from existing results on approximation by network functions.
The first point can be deduced from [Theorem 1]hanin2017approximating. The
second point can be derived from [Proposition 2]hanin2017approximating or
from [proof of Theorem 3.2.]hardt2016identity.

Proposition 2.

1. Let M be some compact subset of Rn0 . If there exists a subspace U ⊂ Rn0

with dim(U) < n0 such that PU is injective as a mapping from M to U ,
then M admits universal uniform approximation of continuous function by
network functions in NNReLU(dim(U) + 1).

2. Let M = {x1, ..., xm} ⊂ Rn0 be a finite set and f :M → R some mapping.
Then there exists a network function F ∈ NNReLU(2) such that F (x) =
f(x) for all x ∈M .

The proof is almost straightforward, given the results from the aforementioned
works. A proof can be found in the appendix.

We next extend the second statement of the latter proposition to the case
of two disjoint n0-dimensional compact sets.Theorem 1 shows that arbitrary
uniform approximation is not admitted on such domains. However, exact fit
is possible for functions that are constant on each of these sets under certain
geometrical properties on their mutual location. The approximation of such
functions arises naturally in classification tasks where each point in a particular
disjoint compact set belongs to the same class, i.e. these sets constitute different
disjoint clusters of the data.
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Theorem 2. Let M = K1 ∪K2, with disjoint compact sets K1,K2 ⊂ Rn0 such
that for some c ∈ Rn0 and some linearly independent v1, ..., vn0 ∈ Rn0 the set K1

is contained in the sector

S := {x ∈ Rn0 : x = c+

n0∑
j=1

λjvj , λj > 0}

and K2 ⊂ Rn0 \S. Then for every function f :M → R that takes constant values
on K1 and K2, respectively, there exists a network function F ∈ NNReLU(n0, 4)
such that

f(x) = F (x)

for every x ∈M .

The conditions of Theorem 2 are verified and inspected by numerical experi-
ments in Section 6. However, to us it is unclear whether the assumptions on the
mutual location of the compact components in Theorem 2 can be significantly
weakened. Increasing the depth will certainly allow more complex configurations.
However, from Theorem 1 is clear that K2 cannot completely enclose K1 when
the maximum width is upper bounded by n0, no matter how many layers the
network contains. We think that closing the described gap could entail important
insights for the theory of neural networks.

For the proof of the latter result we need the following.

Proposition 3. Let K, M be two compact sets in Rn0 that are strictly separable
by a linear hyper surface. Then there exists an F ∈ NNn0

ReLU(n0, 2) such that
F (K) is a single vector in Rn0 \M and F (x) = x for all x ∈M . Moreover, F
can be arranged in a way that given ε > 0

min
x∈K
‖F (K)− x‖ < ε.

As a consequence of Proposition 3 and Proposition 2, we obtain the following
for the case of more than two distinct sets under considerably more restrictive
condition as in Theorem 2.

Corollary 2. Let M =
⋃d
j=1Kj with pairwise disjoint compact sets Kj ⊂ Rn0 ,

j = 1, ..., d such that for every Kj there exist vj ∈ Rn0 and qj ∈ R such that

vTj x > qj for all x ∈ Kj , and vTj x < qj for all x ∈M \Kj ,

i.e. there are linear hypersurfaces separating each Kj from the remaining Kl,
l 6= j. Then for every function f :M → R that takes constant values on every
Kj, j = 1, ..., d, there exists a network function F ∈ NNReLU(n0) with

f(x) = F (x)

for every x ∈M .
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Proof. (Corollary 2) By means of Proposition 3, we find an F1 ∈ NNn0

ReLU(n0)

such that F1(x) = x for x ∈
⋃d
j=2Kj and a1 := F1(K1) is a single vector

in Rn0 \
⋃d
j=2Kj . Proposition 3 also allows us to choose F1 in a way that

a1 is sufficiently close to K1 that the conditions of Corollary 2 still apply to⋃d
j=2Kj ∪ {a1}. We can iteratively apply Proposition 3 to find F1, ..., Fd ∈
NNn0

ReLU(n0) such that

Fd ◦ ... ◦ F1(Kj) = aj , j = 1, ..., d

for pairwise distinct a1, ..., ad ∈ Rn0 . Now, for a given f : M → R with
f(x) = yj for all x ∈ Kj , j = 1, ..., d, Proposition 2 yields an F̃ ∈ NNReLU(2)

with F̃ (aj) = yj for all j = 1, ..., d. The desired network function is then obtained
by F := F̃ ◦ Fd ◦ ... ◦ F1.

Proof. (Proposition 3) Let us remind that e1, ..., en0 are the standard basis
vectors in Rn0 . By assumption, there is a v ∈ Rn0 , with ‖v‖ = 1 and a q ∈ R
such that vTx > q for x ∈ K and vTx < q for x ∈M . For a given ε > 0 we may
assume that the linear hyper surface defined by v, q, H := {x ∈ Rn0 : vTx = q}
is so near to K that for some a ∈ K that realizes the minimum distance of K to
H we have

vTa = q + ε/2. (9)

Indeed, otherwise we can shift the hyper surface accordingly by increasing q.
Then, by the fact that ‖v‖ = 1, (9) means that a has a distance equal to
ε/2 to H and ã := a − ε/2 v ∈ H is the unique vector in H that realizes this
distance. Let V1 ∈ Rn0×n0 such that x 7→ V1x implements a length preserving
rotation that maps v to −e1. Then x 7→ V1x− V1ã maps H to span(e2, ..., en0

)
and K1 := V1K − V1ã is contained in the half space of vectors with negative
first component and with a1 := V1a − V1ã = −ε/2 e1, and M1 := V1M − V1ã
is contained in the half space of vectors with positive first component. By
compactness of K1 and M1, we can find u1, ..., un0 ∈ span(e2, ..., en0), such that
for a δ > 0, −u1 − δe1, ...,−un0

− δe1 are linearly independent and such that
with δ sufficiently small

K1 ⊂ S− := {x ∈ Rn0 : x =

n0∑
j=1

λj(−uj − δe1), λj > 0}

M1 ⊂ S+ := {x ∈ Rn0 : x =

n0∑
j=1

λj(uj + δe1), λj > 0}.

Let V2 ∈ Rn0×n0 such that x 7→ V2x maps −uj − δe1 to −ej for j = 1, ..., n0.
Then, by linearity, every uj + δe1 is mapped to ej for j = 1, ..., n0. Thus S−
is mapped to the cone of vectors having negative components only, and S+ is
mapped to the cone of vectors having positive components only. Hence, the
application of ReLU maps all of V2K1 to 0 and maps V2M1 identically. We can
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now apply the inverse of the linear affine mappings which will map V2M1 back
to M , i.e. for

F (x) := V −11 V −12 ReLU(V2(V1x− V1ã)) + ã.

With this F we have F (M) =M and F (K) = F (a) = ã. Note that by (9) and
the definition of ã

min
x∈K
‖x− F (a)‖ = ε/2 < ε

which concludes the proof.

Proof. (Theorem 2) Let V be the matrix that results from the concatenation
of the columns v1, ..., vn0

and set W1 := −V −1 and b1 := W1(−c). Then the
mapping x 7→W1x maps the vj to −ej , j = 1, ..., n0 and W1K1 + b1 is a subset
of

S− := {x ∈ Rn0 : x =

n0∑
j=1

λj(−ej), λj > 0}

and W1K2 + b1 ⊂ Rn0 \ S−. Thus, the one layer network function F1(x) :=
ReLU(W1x+ b1) maps all x ∈ K1 to 0 and x ∈ K2 are mapped to

{x ∈ Rn0 : x =

n0∑
j=1

λjej , λj ≥ 0} \ {0}.

Hence, with a sufficiently small q > 0, F1(K1) and F1(K2) are strictly separated
by the linear hyper surface

{x ∈ Rn0 : (1, 1, ...., 1)x = q}.

The twofold application of Proposition 3 yields two network functions that can
be concatenated to a three layer network function F2 ∈ NNn0

ReLU(n0, 3) with
F2(x) = W4 ReLU(W3 ReLU(W2x + b2) + b3) + b4 and such that F2(F1(K1))
and F2(F1(K2)) are two distinct vectors u1, u2 in Rn0 , respectively. For a given
f :M → R that takes constant values on K1 and K2, say a1, a2 ∈ R, respectively,
we attach a linear affine layer x 7→ wTx+ b5, where w ∈ Rn0 , b5 ∈ R such that
wTu1 + b5 = a1 and wTu2 + b5 = a2. This mapping is integrated in the final
layer of F2 ◦ F1 and finally gives

F (x) = wTW4 ReLU(W3 ReLU(W2 ReLU(W1x+ b1) + b2) + b3) + wT b4 + b5.

We conclude this section with a comment on implications of our results on
generalisation. In zhang2016understanding the researchers made the observation
that deep neural networks can interpolate randomly annotated data, which shows
the enormous capabilities of large networks to memorize data. In Proposition
2, Theorem 2 and Corollary 3 we show that network functions of width less
than or equal than to input dimension in many configurations also implement
an exact fit of the training data. At the same time these network functions are
restricted by the maximum principle given in Theorem 1, which may contradict
the underlying distribution of the data at hand.
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5 Uniqueness
A maximum principle similar to Theorem 1 also applies for harmonic and
holomorphic functions, that is, the null space of the Laplace operator and the
null space of ∂z := 1/2(∂x + i∂y) (x real part, y imaginary part), respectively
[Rud06]. As a consequence, a uniqueness theorem applies which states that
two harmonic, respectively holomorphic, functions coincide on the interior of a
given set when they coincide on its boundary, respectively. In view of Theorem
1, it is hence natural to ask whether a similar result applies in the case of
network functions in NN σ(n0). However, the proof for the case of harmonic
and holomorphic functions relies on the fact that these functions form a vector
space, which is not the case for the set NN σ(n0). The following examples show
that a uniqueness theorem does not hold, in general, for the network functions
with (strictly) monotonic activation functions considered in this work.

Example 2. Let σα(x) be the leaky ReLU function defined by σα(x) = x for
x ≥ 0 and σα(x) = αx for x < 0 with α > 0. Then

x 7→ σα

(
1

(1 + α)
σα(x) +

α

(1 + α)

)
and x 7→ σα(

1

2
σα(x+ 1))

both map −1 to 0 and 1 to 1, but the first one maps 0 to α/(1 + α), while the
second one maps 0 to 1/2 and hence do not coincide unless α = 1.

Example 3. A similar example can be obtained for analytic activation functions.
Indeed, let σ be the sigmoid function. For x 7→ σ(ax+ b), one can arrange a > 0,
and b ∈ R, such that in one case only a concave and in a second case a convex
excerpt of sigmoid is active for x in [0,1], respectively, and such that both functions
coincide at 0 and 1. As the first one is concave and the second one is convex on
[0,1] and both are non-linear, they do not coincide on the interior of [0,1].

A simple uniqueness result follows from the following observation.

Proposition 4. Let M be a compact subset of Rn0 , F ∈ NNn0

ReLU(n0) and
B = F−1 ((F (M))◦) the inverse image of the inner points of F (M). Then F is
linear affine and bijective as a mapping from B to (F (M))◦.

A proof of Proposition 4 is given in the appendix. As a consequence we have.

Corollary 3. Let F,G ∈ NNn0

ReLU(n0) and M ⊂ Rn0 be some compact set. If
F and G coincide on a set of vectors v1, ..., vn0+1 in

K := F−1 ((F (M))◦) ∩G−1 ((G(M))◦) ,

such that vj − vn0+1, j = 1, ..., n0 are linearly independent, then F (x) = G(x)
for all x ∈ K.

It should be noted that in the latter corollary, the fact that F,G coincide on
K does not imply that F and G are the same network functions as functions on
Rn0 .
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6 Numerical experiment
We provide numerical results to illustrate that neural networks learn transforma-
tions similar to the construction of our theoretical derivations in the proof of
Theorem 2. We formulate a toy example consisting of several (6 or 8) pair-wise
disjoint balls of the same class encasing a center ball of a different class. The bor-
der balls use a radius of 0.125 and a subset of the centres (0.25, 0.25), (0.5, 0.25),
(0.75, 0.25), (0.25, 0.5), (0.75, 0.5), (0.25, 0.75), (0.5, 0.75) and (0.75, 0.75) while
the center ball uses a radius of 0.01 and the center (0.5, 0.5). We generated
randomly and uniformly 2000 data points for each border ball, however, as the
classes would hence be unbalanced, we generated as many data points for the cen-
ter ball as there are in total for the border balls. We used a multilayer perceptron
(MLP) consisting of 4 layers, all of width 2, and the ReLU activation function
(as stated in the theorem). For illustration purposes, we used an input dimension
of 2 such that the neural network functions are of the form F ∈ NNReLU(2).
We used a batch size of 16, the Adam optimizer with a learning rate of 0.001
and we trained each model for 500 epochs using the mean-squared error (MSE)
as our cost function. The different datasets and results are reported in Fig. 1.
We rate an experiment as successful when the universal uniform approximation
condition (3) tends to zero. It can be observed in Fig. 1 (a) that, when the
conditions of Theorem 2 are fulfilled, the neural network can approximate the
function correctly and the different layers are learning transformations similar to
the constructions in the proof. When the conditions are violated, as is shown in
Fig. 1 (b), the universal uniform approximation condition does not tend to zero
and the intermediate layer transformations need to violate the constructions in
the proof. Additional results are reported in Fig. 2 in the appendix.

7 Conclusion
We identified a maximum principle that holds in the case of width less than or
equal to the input dimension for all common activation functions, which can be
interpreted as a root cause why universal approximation is not possible under the
aforementioned conditions. On the positive side we proved that, although being
not sufficient for universal approximation in the general sense, ReLU network
functions of width less than or equal to the input dimension are sufficient to
implement functions that give zero or arbitrary small training error in some
machine learning tasks. In particular, we have shown that for the case of two
disjoint compact sets, exact fit in a two class classification task is feasible with
4 layers, provided the sets can be separated by a cone like sector. However,
there remains a gap between our positive results and limitation implied by the
maximum principle. Our numerical experiments show that neural networks learn
transformations similar to our theoretical derivations.
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A Appendix

Proof Proposition 2
Proof. We start with the proof of (1). It is clear that PU followed by a linear
isomorphism E : U → Rm with m = dim(U) < n0 can be implemented by
x 7→ W1x + b1 with some W1 ∈ Rm×n0 , b1 ∈ Rm. As M is compact and
hence bounded, one can further arrange b1 in a way that W1x+ b1 ≥ 0 holds
(component wise) for every x ∈ M , which implies that ReLU(W1x + b1) =
W1x + b1 for all x ∈ M . Thus g(x) = ReLU(W1x + b1) maps M bijectively
to M1 := ReLU(W1M + b1) ⊂ Rm. Now, uniform approximation of a given
continuous function f from M to R amounts to uniform approximation of
continuous function from M1 to R. By Tietze’s Extension Theorem [Rud06]
we can apply Theorem 1 from hanin2017approximating which yields arbitrary
accurate uniform approximation of continuous function on rectangular domains
in Rm by network functions in NNReLU(m+ 1).

To show (2), let W1 ∈ R1×n0 and b1 ∈ R such that yj = W1xj + b1,
j = 1, ...,m, are distinct points M1 = {y1, ..., ym} ⊂ [0,∞). It is then clear
that also F0(x) := ReLU(W1x + b1) maps M to M1. Now, for some function
f :M → R (which is automatically continuous as M is finite) we have to find
a network function F1 ∈ NNReLU(2) such that F1(yj) = f(xj) for j = 1, ...,m.
To this end, we observe that the mapping yj 7→ f(xj) j = 1, ...,m can be
interpolated by a max-min string, see [ Definition 1]hanin2017approximating for
a definition, so that [ Proposition 2]hanin2017approximating yields the desired
F1. Alternatively, one could follow the proof of [Theorem 3.2.]hardt2016identity,
observing that on the non-negative yj , j = 1, ...,m, the residual ReLU network
function constructed in the latter can be written as a ReLU network function
in the sense of this work with width two in our case. Finally, we have that
F = F1 ◦ F0 ∈ NNReLU(2) and F (xj) = f(xj) for all j = 1, ...,m.

Proof Proposition 4
Proof. It is clear that the existence of inner points in F (M) requires that every
weight matrix of F is square and of full rank. Indeed, otherwise the range ofM is
reduced to a manifold of dimension less than or equal to n0− 1 after a layer that
violates this condition. From then on the range remains without inner points.
If L = 1, then we are done, since in this case F reduces to an isomorphism
on Rn0 . Otherwise, let Mj := Aj(Mj−1) for j = 1, ..., L and M0 := M . Hence
F (M) =ML. Since WL is non-singular, uL ∈ML is an inner point of ML if and
only if uL = WLuL−1 for some unique point uL−1 ∈ M◦L−1. This implies that
component wise uL−1 > 0 and further, by the fact that WL−1 is non-singular,
uL−1 = WL−1uL−2 + bL−1 for some unique point uL−1 ∈ M◦L−2. The exact
same reasoning can now iteratively be applied down to the first layer. This gives
a sequence of uj ∈ M◦j , j = 1, ..., L so that component wise uj > 0 holds for
every j. Hence, uj =Wjuj−1 + bj for j = 1, ..., L. Thus, for the inverse image
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B = F−1 (F (M)◦) ⊂ M◦, the mapping F reduces to an bijective linear affine
mapping.

Numerical Experiment
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(a) 7 border balls - center ball radius: 0.01 - MSE: 0.0 - UUAC: 0.0

(b) 8 border balls - center ball radius: 0.01 - MSE: 0.01135 - UUAC: 1.08494

Figure 1: Datasets (a) and (b) together with the learned transformations by each
activation function and layer. When the conditions of Theorem 2 are fulfilled (a),
the transformations are similar to the construction in the proof. Otherwise (b),
the construction in the proof is violated. We report the final decision regions, the
mean-square error (MSE) and the universal uniform approximation condition
(UUAC). Each subplot’s title describes the function which was applied to the
previous subplot’s data.
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(a) 6 border balls - center ball radius: 0.01 - MSE: 0.0 - UUAC: 0.0

(b) 6 border balls - center ball radius: 0.05 - MSE: 0.00026 - UUAC: 0.99092

Figure 2: Additional results for Fig. 1 of the main paper. Different input datasets
(a) and (b) together with the resulting transformations by each activation function
and each layer learned by the neural network after 500 epochs. We also report the
final decision regions, the mean-square error (MSE) and the universal uniform
approximation condition (UUAC). When the conditions of Theorem 2 are fulfilled
(a), the learned transformations are similar to the construction in the proof of
Theorem 2. When the condition of Theorem is violated (b), the intermediate
layers also violate the construction in the proof. The title of each subplot
describes the function which is applied to the data of the previous subplot to
form the data of the current subplot.
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