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Abstract

We introduce the problem of Task Assign-
ment and Sequencing (TAS), which adds the
timeline perspective to expert crowdsourc-
ing optimization. Expert crowdsourcing in-
volves macrotasks, like document writing,
product design, or web development, which
take more time than typical binary micro-
tasks, require expert skills, assume varying
degrees of knowledge over a topic, and re-
quire crowd workers to build on each other’s
contributions. Current works usually as-
sume offline optimization models, which
consider worker and task arrivals known and
do not take into account the element of time.
Realistically however, time is critical: tasks
have deadlines, expert workers are available
only at specific time slots, and worker/task
arrivals are not known a-priori. Our work is
the first to address the problem of optimal
task sequencing for online, heterogeneous,
time-constrained macrotasks. We propose
TAS-ONLINE, an online algorithm that aims
to complete as many tasks as possible within
budget, required quality and a given time-
line, without future input information re-
garding job release dates or worker avail-

abilities. Results, comparing TAS-ONLINE
to four typical benchmarks, show that it
achieves more completed jobs, lower flow
times and higher job quality. This work
has practical implications for improving the
Quality of Service of current crowdsourcing
platforms, allowing them to offer cost, qual-
ity and time improvements for expert tasks.

1 Introduction

As the appeal of crowd work increases, there is a
growing need to provide support for more complex
tasks and workflows. Examples of such tasks in-
clude document editing, product design, social inno-
vation and idea development, offered through ded-
icated platforms (upWorks!, crowdSpring? etc.), or
incorporated into traditional ones through complex
workflows (e.g. the recently launched CrowdFlower
Labs®). This type of crowdsourcing is often referred
to as expert crowdsourcing, and the tasks that it in-
volves are referred to as macrotasks [15]. Macro-
tasks differ from the typically crowdsourced micro-

Thttps://www.upwork.com/

2http://www.crowdspring.com/

Shttp://www.crowdflower.com /blog/introducing-
crowdflower-labs



tasks in that they require expert skills, assume vary-
ing degrees of knowledge over a topic, may take more
worker time and often involve task dependency, i.e.
workers building on each other’s contributions.

Together with the demand for complex tasks and
their supporting workflows, customers are increas-
ingly interested in performance guarantees, i.e. the
optimization of expert crowdsourcing in terms of cost,
quality and timeliness. Recent studies that examine
expert crowdsourcing optimization [2, 14] typically
seek to find worker assignments per task such that
the worker contributions add up to a required qual-
ity threshold within a given budget. Roughly speak-
ing, the crowdsourced tasks play the roles of mul-
tiple knapsacks with some additional concepts like
domain-specific expertise and wages per worker, dif-
ferent models of acceptance probabilities or types of
quality aggregation. Unfortunately current studies
do not take into account the aspect of time, for ex-
ample in terms of task deadlines, worker time con-
straints, or time-dependent worker/task variability.
As such these studies examine only the assignment
part of the worker allocation problem (finding which
worker should take which task), but not the sequenc-
ing part (identifying when each worker should con-
tribute). Moreover they usually assume an offline
setting, where the algorithms are provided with the
complete worker /task input information at once. In a
realistic crowdsourcing setting however, time is an in-
herent property: customers require the tasks to finish
upon a certain deadline, expert workers are available
only at specific time slots, and worker/task arrival or
departure information is not a-priori known. Opti-
mizing for time is thus crucial, and raises the need
not only for worker-to-task assignment but also for
sequencing. It also raises the need for online rather
than index-based algorithms, which can take effi-
cient sequencing decisions having access only to time-
dependent information that is available until their
decision point.

In this paper we introduce the problem of crowd-
sourcing Task Assignment and Sequencing (TAS),
which adds the timeline perspective to the crowd-
sourcing allocation optimization model: How can we
find task assignments that can be rolled out in a re-
alistic timeline, featuring unknown task release dates

and worker availabilities, as it is the case for real plat-
forms?

To the best of our knowledge, this is the first
work that addresses the problem of assignment and
sequencing optimization for expert crowdsourcing
tasks. Overall, our three main contributions with
this paper are:

o We explicitly add the timeline perspective to task
assignment modeling in expert crowdsourcing.
That is, our models include not only the worker-
to-task-assignments, but also the rolling out of
these assignments along a timeline under reason-
able constraints. We call this problem modeling
TAS and prove its strong NP hardness.

e We propose a online algorithm, TAS-ONLINE,
which seeks to complete as many jobs as pos-
sible within budget, required quality and given
timeline, by computing worker sequence-to-task
matchings, and without any future input infor-
mation regarding job release dates or worker
availabilities.

e We illustrate, through simulated and real-world
experiments, that TAS-ONLINE can achieve more
completed jobs, lower flow times and higher
quality compared to four typical benchmarks.

The rest of this paper is organized as follows.
In section 2 we recapitulate the related literature
on crowdsourcing optimization, starting from earlier
works that focus on micro-tasks and reaching latest
research efforts on knowledge-intensive macro-tasks.
In section 3 we describe the characteristics of the ex-
pert crowdsourcing setting that this work applies and
illustrate, through an example, why taking time into
account matters in this particular setting. In this
section we also formally model the TAS problem and
prove its strong NP-hardness. Next, in section 4 we
describe the proposed online algorithm (TAS-ONLINE)
for the solution of the TAS problem. In section 5,
we present and discuss the experimental results, ob-
tained on both simulated and real-world data. These
results compare TAS-ONLINE with four benchmarks
found in the literature, and show that TAS-ONLINE
achieves higher numbers of completed jobs (both in



terms of absolute value and as a percentage of the
solution’s upper bound), lower flow times (the time
between a job’s release date and the latest assignment
on that job), better budget utilization and higher lev-
els of quality, comparable only the respective TAS-
OFFLINE version for certain of the above measures.
Finally, we discuss possible extensions of the TAS
model and algorithm (section 6) and end with the
paper’s main findings and conclusions (section 7).

2 Related Work

2.1 Crowdsourcing Optimization

Crowdsourcing optimization is a term used in various
problem settings, including optimizing the selection
of worker labor channels to improve performance [22],
discovering the optimal worker wage [17], determin-
ing the optimal number of workers to undertake each
task so as to maximize quality and minimize cost (a
method referred to as “plurality optimization” and
applicable on n-ary tasks with an objective “true
value”) [34], or identifying the optimal set of tasks to
forward to the crowd (for systems like database query
execution ones, which are based partially on crowd-
sourcing and partially on automated methods) [12].
The family of optimization problems that our work
falls into is allocation optimization, i.e. the identifica-
tion of which worker should work on which task and
when, in order to optimize one or more global per-
formance metrics, which usually include cost, quality
and number of acceptable tasks. This family of prob-
lems consists of two distinct optimization problems,
task assignment and task sequencing. Task assign-
ment examines which worker should be given which
task. Task sequencing adds the element of time, ex-
amining when will the worker be given the task. Most
existing works focus on the first problem, i.e. task
assignment, either for microtasks or for macrotasks.
Microtasks are tasks that require a small amount
of worker time, accept binary (true/false) or n-ary
(multiple choice) worker inputs, and the quality of
which is determined through methods such as ma-
jority voting (assigning multiple workers per micro-
task). Macrotasks [15] require more worker time, ac-
cept open-ended continuous (rather than binary or

n-ary) worker inputs and their quality is determined
through external subjective evaluation (for example
peer review).

2.2 Optimizing Task Assignments

Regarding microtask  assignment  optimization,
Karger et al. [23] work with homogeneous microtasks
(that all have the same level of difficulty and do
no distinguish among task “topics”), and propose
a matching algorithm inspired by the standard
belief propagation algorithm for approximating max
marginals, which is order-optimal and minimizes
cost. This study is among the first to show that the
problem of task matching in crowdsourcing can be
transformed to a bipartite graph design problem,
where workers are one part of the graph, tasks
are the other and the edges represent assignments
of workers to tasks. Ho et al. [16] work with
heterogeneous microtasks of n-ary classification
quality on a model where worker skills per microtask
are a-priori unknown, and propose a two phase
exploration-exploitation assignment algorithm that
seeks to maximize the total benefit of the requester
and is competitive with respect to its counterpart of
known worker skills. Yuen et al. [43, 44, 42] propose
a matrix factorization approach that utilizes the
workers’ task performance and search history to
derive their preferences and perform an improved
task-to-worker matching. Regarding macrotask
assignment optimization Goel et al. [14] and Roy
et al. [2, 39] both propose task-to-worker assign-
ment optimizations (the first using a mechanism
design-based approach and the second through an
index-based approach) on models that consider het-
erogeneous macrotasks and where the optimization
goal is to maximize the utility of the requester while
ensuring budget feasibility. Yue et al. [41] add to
this model the element of team instead of individual
worker assignments, and propose a heuristic genetic
algorithm that optimizes for task budget and quality,
taking into account worker pay expectations, skills
and availability. Jabbari et al. [20] add another
interesting facet to the heterogeneous task assign-
ment model, by extending it to cover the online
aspect of the problem (workers arrive online, no



prior knowledge over arrivals), and they impose
certain constraints that must be respected, such as
declaring feasible tasks that workers can handle and
the payment they require. The difference of the
above works with ours is that their models do not
consider the element of time, i.e., they focus only
on the task assignment and not the task sequencing
aspect of the problem.

2.3 Optimizing Task Timing

Finally, a few studies focus precisely on time-sensitive
optimization. Regarding time-sensitive microtasks,
Yu et al. [40] optimize the number of tasks to recom-
mend to each worker per time unit with the objective
of maximizing the time average number of success-
ful (i.e. of acceptable quality) jobs for a given time
period. Their model assumes binary task quality,
a pull-and-filter task selection model (workers select
which tasks they want to work on and the system
filters these selections according to its optimization
objective) and performs task allocation on the basis
of worker accuracy measured in a [0,1] scale using a
heuristic algorithm of linearithmic complexity. Al-
though this study does incorporate the element of
time, it is different than ours in that the model it
uses assumes binary, homogeneous tasks rather than
heterogeneous tasks of continuous quality. The use
of homogeneous tasks (all tasks have the same diffi-
culty, no distinction of task topics) means that op-
timization needs to be performed in terms of the
number of jobs per worker, rather in terms of allo-
cating specific workers to specific jobs according to
their skills. Bernstein et al. [4, 3] also work with ho-
mogeneous microtasks and propose a retainer model
for pre-recruiting (reserving) the optimal number of
workers, so as to minimize task completion latency.
This work however does not take into account worker
skills and subsequently does not seek to maximize
task quality. On heterogeneous microtasks, Faridani
et al. [13] and Minder et al. [33] add the element of
pricing to the problem model, proposing task pricing
algorithms that aim to maximize the number of tasks
finishing on time (the first study), while respecting
budget and quality constraints (the second study).
Mechanism design [35, 36] and multi-armed bandit

mechanism design [5] mechanisms have also been em-
ployed to manipulate the time behavior of the crowd
towards an efficient execution of time-critical tasks.
The above works are different from our work, in that
they do not explicitly sequence the tasks to the work-
ers but they rather seek to incentivize the crowd’s
timely responses in order to achieve the time-related
task objective.

In regards to time-sensitive macrotasks Khazankin
et al. [26] propose a mathematical optimization ap-
proach that learns the task selection behavior of
workers and then executes tasks in a manner that
optimizes for cost and considers deadlines. This
approach does not consider task quality, yet it is
one of the first attempts to sequence time-sensitive
macrotasks. Finally, Boutsis and Kalogeraki [7]
propose an multi-objective optimization approach
which searches for Pareto-optimal solutions, seek-
ing to identify the group of workers (among multi-
ple candidate groups) with the highest probability of
finishing the task on time. This approach is differ-
ent than ours, in that it does not apply sequencing
along a timeline, but rather makes one-shot assign-
ments based on the worker probabilities of meeting
the deadline.

Overall, crowdsourcing optimization studies have
so far examined mainly the assignment but not the
sequencing aspect of the problem. The works that
optimize for time-sensitive task characteristics are
few and they either focus on binary /n-ary microtasks
(which differ significantly from the expert macrotasks
that we are interested in) or they do not sequence
the worker-to-task assignments along a timeline. We
address in our work the problem of optimal task se-
quencing for online, heterogeneous, time-constrained,
macrotasks. As we will see in the following section, it
is this type of tasks that expert crowsourcing consists
of, and thus their optimization has significant impact
on many recent platforms and applications.



3 Task Assignment and Se-
quencing (TAS)

In this section we first describe, from a high-level
viewpoint, the expert crowdsourcing task model
which we target through this work. Then we provide
an example to illustrate the importance of adding the
timeline sequencing element into the above setting.
Next we define the TAS problem model, in terms
of the input data, feasible solutions, constraints and
optimization goal. Finally we analyze this problem
model in terms of complexity.

3.1 Expert Crowdsourcing Setting

The expert crowdsourcing problem setting, at which
this work is aimed, features some very particular
characteristics that make it unique compared to other
crowdsourcing problem settings:

1. Heterogeneous rather than homogeneous
tasks. We work with crowdsourcing tasks that
require different skills and skill levels from the
workers, and that belong to multiple “topics”
(rather than a single one). Workers in this set-
ting possess a set of skills, and are less replace-
able and less abundant than crowdsourcing set-
tings that consider homogeneous tasks and skills
(everyone can do every task).

2. Macro- rather than microtasks. Whereas
microtasks accept binary or n-ary (multiple
choice) worker input, and their quality is de-
fined by assigning multiple simultaneous workers
on the task and then performing majority vot-
ing, macrotasks feature open-ended worker in-
put (e.g. write a product description), and their
quality is built by one worker contribution af-
ter the other (sequentially rather than simulta-
neously).

3. Online rather than offline. Rather than
working on a simplified offline setting, where the
pool of workers and/or tasks are a-priori known,
we consider an online setting, where workers
demonstrate a dynamic flow of arrivals and de-
partures and tasks arrive in an unpredictable

manner. Any sequencing decision must be made
based on task/worker information available up
to the specific point in time.

4. Time-constrained rather than only
cost/quality-constrained tasks. In addition
to the need of achieving a certain utility metric
(e.g. quality, number of acceptable tasks etc.)
and the need to keep costs within budget,
the online macrotasks of this setting have a
deadline, i.e., they must also finish by a specific
time point.

Application areas. Many tasks and platforms, es-
pecially recent ones, fit the above expert crowdsourc-
ing setting and could benefit from its optimization.
The first example are platforms such as upWork?
that work with freelancer experts on creative tasks
such as web design and development, document writ-
ing, or coding. Social innovation platforms such as
OpenIDEOQ?® or creative product design platforms like
Quirky®, where users build on one another’s ideas,
could also directly benefit from the optimization of
the above setting. Finally collaborative document
editing applications, such as corporate wikis [29],
where it is possible to sequence worker contributions
along a timeline could significantly improve from our
approach.

3.2 The importance of the time ele-
ment

Before giving the formal definition of the TAS opti-
mization problem, we illustrate through an example
the importance of adding the perspective of time, and
how this addition has a significant on performance in
expert crowdsourcing.

Example. Suppose there are only two jobs given,
both from the same knowledge domain. Each job
Jj = (Q,C) has a quality threshold @ that needs to
be reached, and a cost threshold C' that must not be

4https://www.upwork.com/
Shttps://openideo.com/
Shttps://www.quirky.com/



exceeded. For this example suppose
jO = (5a5) and .jl = (4a 4)

On the other hand, each worker i = (e,w) has an
expertise e that increases the quality of a job, and
a wage w that consumes this job’s budget. Let us
assume that three workers

Z.O = (273)7i1 - (3,2) and ’L’3 = (27 1)

are given. Then each job has two possible assign-
ments within budget and with sufficient quality:

Jo + Ado,ir} or {i1, iz}
j1 : {io,iz} or {il,iz}

For both jobs the latter assignment seems to be
preferable over the other since workers {i,i2} pro-
vide more quality for less cost. Now we look at
a sequencing period of three timeslots with limited
worker availability as follows (both jobs are released
immediately):

timeslot 0 1 2
10
il X
9 X X

Since worker i; is available only at a single timeslot
it is clear that at most one job can realize the prefer-
able assignment mentioned above. So assume for the
moment that we choose modestly jo < {ig,i1} for
Jo. This gives us the following partial schedule for
the workers:

timeslot 0 1 2

10 Jo
11 Jo
o X X

But now none of the two feasible assignments for j;
can be realized since only worker 75 remains available.
Although the assignment j; < {iz} is within budget,
it does not reach the needed quality, and j; remains
incomplete in this case.

So let us choose the alternative assignment jo <—
{i1,12} and set i2 on jy at timeslot 0:

timeslot 0 1 2

10 X
i1 Jo
2 Jo X

Now j; cannot be completed without violating the
sequential working assumption w.r.t. this job. On
the other hand, if we set i3 on jy at timeslot 2, we
can complete both jobs with the schedule

timeslot 0 1 2

10 J1
i1 Jo
2 1 Jo

without violating any constraints. To complete the
discussion, note that if we choose j; < {i1,i2} in the
beginning, then jy cannot be completed no matter
what timeslot is used for is (end of example).

The example shows that not only the choice of an
optimal worker-task assignment without considera-
tion of time may be misleading, but also that the
specific selection of timeslots is important.

3.3 The TAS Problem Model

With the following definition we want to capture the
interplay between task assignment and timeline se-
quencing within the same model, and add appropri-
ate constraints. We refer to our problem description
as TASK ASSIGNMENT AND SEQUENCING (TAS) in
expert crowdsourcing.

3.3.1 Input Data

Scheduling period. Suppose we look at ¢ timeslots
[t] ={0,1,...,t — 1}. Each timeslot d € [t] is also
called a day but can be any fixed period of time.

Knowledge domains. A finite set K of know-
ledge domains. Each k € K represents an area of
knowledge or a knowledge topic.

Workers. A finite set U of users, hereby refered to
as workers, participating in the crowdsourcing plat-
form. Each worker i € U has the following charac-
teristics”:

"Note that in the context of this work the quantification
of worker expertise, wage or speed are considered orthogonal



e FExpertise. An expertise vector e; of dimension
|K|. The expertise e;;, of a worker denotes the
added quality that the worker can bring to a job
belonging to domain k.

e Wage. A cost vector w; of dimension |K|. The
amount w;y is the monetary renumeration that
the worker demands in order to perform a job
belonging to domain k.

o Availability. An availability vector a; of dimen-
sion t with entries a;q = 1 if worker i is available
on day d, and a;q = 0 otherwise.

Jobs. A finite set J of knowledge-intensive jobs
that are crowdsourced. A job j is assumed to have
the following characteristics:

e Domain. Each job belongs to exactly one do-
main k; € K.

o Quality threshold. The amount Q; is the mini-
mum quality that the job needs to achieve.

e (lost threshold. The budget for job j is given by
C; as the maximum total amount of money that
can be paid for the job.

o Release date. Each job has a release date r; € [t]
which means that job j enters the crowd system
at timeslot r; (and never leaves the system).

Sequentiality. Finally our model assumes a se-
quential work mode along the timeline, according to
which workers build on one another’s contributions,
at most one worker can be assigned to a task simul-
taneously, and each worker contributes at most to a
single task at a time. Sequentiality is chosen for three
reasons. First it is often imposed by the nature of ex-
pert crowdsourcing macrotasks, which are not easily
decomposable to microtask level and as such they do
not allow multiple simultaneous worker contributions
(e.g. writing a document cannot be done by decom-
posing it to sentence level). Second, sequentiality al-
lows building on the task’s quality while not necessi-
tating worker concurrency, which in practice is more

to the studied assignment and sequencing problem. The inter-
ested reader is referred to [29, 8, 19] for available worker profile
quantification techniques based on machine-learning, implicit
evaluation or information theory.

difficult to achieve when specific worker skills (i.e. ex-
perts on a topic) are required. Third, sequentiality
allows a more realistic coupling of our approach with
worker skill evaluation mechanisms, making it easier
to accurately evaluate the quality that each worker
has brought once she has finished working on a task.
Nevertheless, as also discussed in section 6 an exten-
sion of our model to include worker concurrency is
feasible and we aim to examine it as part of our fu-
ture work.

3.3.2 Feasible Solutions, Constraints and

Optimization Goal

A schedule needs to carry information about the re-
source allocation for each job in terms of workers and
in terms of time: When does what worker contribute
to which job?

Solutions. In a solution for input data = =
(t,K,U,J) we have for each job j € J a vector U; of
dimension ¢ with entries from U U{none}. If U;q =i
then worker ¢ is assigned to job j and scheduled on
day d, and if Ujq = mone then there is no worker
assignment for job j on day d.

Note that we represent solutions hereby as
job/timeslot-schedules with worker entries, whereas
in the previous example we utilized an equivalent
worker/timeslot-representation with job entries. So
the successful schedule from the example in the
present notation is

Uy =
U, =

(none, i1, i2)

(i2, none, ig)

Constraints. A solution is called feasible if and
only if the following holds:

(a) No worker is assigned to more than one job at
a time, i.e., for all d € [t] and distinct 7,5’ € J
it holds that Ujq # Ujrq (unless both values are
none).

(b) No job is assigned to more than one worker at

a time, i.e., for all j € J and d € [t] there is at

most one worker stored in Uj;q. This is ensured

by the representation of U;.



(¢) No worker is assigned more than once to the
same job, i.e., for all j € J and distinct d, d" € [¢]
it holds that Ujq # U, (unless both values are
none).

(d) No worker is scheduled on a day where she is not
available, i.e., for all d € [t] and j € J it holds

that if Ujd =4 then a;q = 1.

(e)

No job is worked on before its release date, i.e.,
for all j € J and d < r; it holds that U;q = none.

(f) No job exceeds its budget, i.e., for all j € J it
holds that ¢; < C; where ¢; is the cost of job j

defined as ¢; = Zier w;y if 7 has domain k.

Note that there always exists a trivial feasible solu-
tion with Ujq = none for all j, d.

Objective. In order to assess the quality of a fea-
sible solution y = {j — U; | j € J} we determine for
each j with domain k the quality of job j w.r.t. this
solution as ¢; = ZZEU_ eir. WNote that in the con-
text of this work we define task quality as the sum of
expertises of the workers that participate in it, using
the additive skill aggregation model that is often used
for expert sequential macrotasks such as document
editing [1, 31]. Other aggregation functions, includ-
ing minimum, maximum or product [1] could also be
used to compute a task’s quality, however their full
examination is out of the scope of this work.

Now we set the measure for input z = (¢, K, U, J)
and solution y to

m(z,y) =HjeJ|q>Q;}

which we want to maximize. Therefore we count
the number of jobs that reach their quality threshold
within budget and that can be scheduled in a feasible
way w.r.t. constraints (a) to (f). We call such jobs
completed.

3.4 TAS: An allocation problem with
two aspects

The TAS optimization problem combines aspects of
two well-studied problems of different nature, reflect-
ing resource allocation of workers on one hand, and
allocation of timeslots on the other.

3.4.1 Allocation of Workers:
Knapsack perspective

The Multiple

If we look only at worker allocation in our model, we
can understand each job j of domain k with budget
C; as a knapsack of this size that we need to fill with
worker’s expertises e;. Since the worker availabili-
ties restrict the number of times a single worker can
be packed, we have a bounded version of the MULTI-
PLE KNAPSACK problem [25]. The difference to this
classical problem is the optimization goal. While in
TAS we want to maximize the number of completed
jobs with respect to their individual quality thresh-
olds @, the goal in MULTIPLE KNAPSACK is to maxi-
mize the sum of all packed expertises, no matter how
these spread over the different knapsacks.

3.4.2 Allocation of time slots: The Openshop
perspective

On the other hand, let us suppose a worker-task-
assignment is already fixed such that all jobs reach
their quality thresholds, and we need to schedule
the selected workers along the timeline with respect
to job releases and worker availabilities. Then we
can understand this partial problem as a machine-
scheduling problem: Here workers play the role of
machines and jobs need to be processes on these ma-
chines. Observe that the order of processing is im-
material in our model, that we demand sequentiality,
and that the processing time of a job on a certain
machine is either 0 or 1 per timeslot (depending on
whether the respecting worker is assigned to this job
or not). So this aspect of TAS is a UNITTIME OPEN-
SHOP problem with limited machine-availability and
job release-dates [27]. Note that the adoption of a
model also implies non-preemption, i.e. a worker can-
not be interrupted once he/she has started working
on a task. The goal of maximizing the number of
completed jobs translates to minimizing the number
of late jobs if we set ¢t as the gobal deadline. We
also want to mention that the sequencing of an al-
ready fixed worker-task-assignment can be reduced
to the BIPARTITE LIST EDGE-COLORING problem [11].
Here jobs and workers form a bipartite graph with the
worker-task-assignments as it’s edges, and timeslots



are represented by colors. Then we assign a list of
colors to each edge (j,4) such that worker ¢ is avail-
able on these timeslots and job j is already released.
A proper coloring of all edges can be found if and only
if the previously fixed worker-task-assignment can be
sequenced on the timeline.

3.4.3 TAS Complexity

Both aspects of TAS that we have pointed out above
are NP-hard on their own, so is TAS as we show
below. For an upper complexity bound note that
the length of TAS-solutions is polynomially bounded
in the input length and that the constraints can be
checked in polynomial time if a solution is given, so
TAS is an NP-optimization problem. Moreover, we
observe that TAS is a large number problem, since
it has KNAPSACK as a subproblem (if there is only a
single job and each worker is available on a different
single day). So it is reasonable to consider strong
NP-hardness.

Theorem 1. TAS is a strongly NP-hard optimiza-
tion problem.

Proof. We show NP-hardness with a polynomial-time
many-one reduction from the NP-complete problem
3-DIMENSIONAL MATCHING [24]. For finite, dis-
joint sets X, Y and Z we say that M C X X
Y x Z is a 3-dimensional matching if for all dis-
tinct triples (z1,y1, 21), (X2, Y2, 22) € M it holds that
r1 # To, y1 # yo and z1 # z9. It is known that
3-DIMENSIONAL MATCHING is NP-complete even in
the special case when |X|=|Y|=|Z| = v and M
has to be a perfect matching with |M| = u.

3-DIMENSIONAL MATCHING (3-DM)

Input: Finite and disjoint sets X, Y, Z with
|X| = Y| = |Z] and a subset W C
X xY xZ.

Question: Is there a perfect 3-dimensional

matching M C W ?

Suppose an instance of 3-DM is given with X =
{zilieul}, Y ={yi|i€[u}, Z={z|ie[u]} for
someuw >1and W C X x Y x Z. The idea is to use
constraint (a) (no worker is assigned to more that one
job at a time) to achieve the needed matching con-
dition. We take elements from X (Y, Z) as workers

available on day 0 (1, 2, resp.) and use domains to fix
the given triples from W. More precisely, we define
a corresponding TAS-instance (¢, K, U, J) as follows:

e The scheduling period has t = 3 timeslots.
e There are |IW| many different domains in K.

e Each triple w € W is encoded as a job j,,, and all
jobs have pairwise different domains. For all jobs
Jw we set quality and cost threshold to @, =
Cj,, = 3 and release date to r;, = 0.

e Workers are defined as U = X UY U Z. For
r € X,yeY and z € Z we set the availability
to ay = (1,0,0), ay, = (0,1,0) and a. = (0,0,1),
respectively. To fix expertise and wage, we con-
sider each triple w = (z,y,2) € W and the cor-
responding job j,,. If j,, has domain k then we
define €xk = Cyk = Czk = 1 and Wyl = Wyk =
w,, = 1. All entries in expertise and wage vec-
tors that are not addressed hereby are set to 0.

First observe that a job j, with w = (z,y, z) reaches
it’s quality threshold if and only if we assign work-
ers {z,y, 2} to this job, since exactly these workers
contribute to the job’s domain.

Now we argue that the given 3-DM instance has
a perfect matching M if and only if the constructed
TAS instance has a feasible solution with |M| = u
completed jobs. If M C W is a 3-dimensional
matching, then we consider the TAS-solution U;, =
(z,y,2) for all w = (x,y,2) € M. Since M is a
matching all distinct solution vectors differ in all com-
ponents, so constraint (a) is satisfied. All other con-
straints are easy to check, just note that each worker
is available only on a single day, that all jobs are im-
mediately released and that no job can exceed the
budget. All jobs in this solution are completed due
to our previous observation.

Conversely, note that if there is a feasible TAS-
solution with completed jobs j, and w = (z,y, 2),
then it must be that U;, = (x,y,%). Since con-
straint (a) holds, the solution vectors for any two
distinct jobs differ in all components. So M =
{(z,y,2) | U;, = (x,y, 2) and j,, completed} is a 3-
dimensional matching and |M| = u.



The reduction function maps only to TAS-
instances where all integer values are polynomially
bounded in the input length, so strong NP-hardness
follows. O

This rules out the possibility of pseudo-polynomial
algorithms and the existence of fully polynomial-
time approximation schemes for TAS unless P equals
NP. Furthermore note that the reduction empha-
sizes the aspect of timeline sequencing, since worker-
task-assignments in the constructed TAS-instance
are trivial (there is exactly one feasible worker-
assignment possible to reach the quality threshold of
each job).

4 An Online Algorithm for
TAS

Due to the dynamic nature of crowdsourcing systems,
it seems not realistic to consider TAS as an offfine
problem where algorithms are provided with the com-
plete input at once. In fact, worker availabilities are
hardly predictable and it is usually not known in ad-
vance which jobs will enter the system at what time.
So the problem of task assignment and sequencing is
inherently online in nature and sequencing decisions
have to be taken without complete information about
the input data. We say that an algorithm for TAS
has the online property, if it processes the input in a
serial way w.r.t. the timeline d =0, 1,... and in each
step d the algorithm has to take its assignment deci-
sions while having access only to the time-dependent
information of the input for timeslots < d. These are
the worker availabilities and the jobs released up to
day d. For more background on the general concept
of online algorithms we refer to [6].

To design such an algorithm we start with the fol-
lowing observation: Suppose a feasible solution y for
TAS is given. If we look at a single day d in this
solution then the assignments of workers to jobs for
that day form a bipartite matching between the (un-
completed) jobs with (remaining) quality needs and
budget on one hand, and the set of available workers
for that day on the other hand. Constraints (a) and
(b) form exactly this bipartite matching condition.

So conversely, if we proceed day by day with our
online algorithm, we can try to compute a matching
between the active (= released but incomplete) jobs
J' in the system on that day, and the available work-
ers U’ for that day. Note that due to this choice of
J" and U’ we also immediately satisfy constraints (d)
and (e). It remains to consider constraints (c) (no
worker assignment to the same job twice) and (f) (no
job exceeds it’s budget). Both can be taken care of
when we construct the edges of possible assignments
in the bipartite graph between J’' and U’: If the re-
maining budget for a job is smaller than the wage of
a worker in this domain, then the edge is omitted.
The same is true if the worker has already been as-
signed to this job in the past. Both conditions can
be checked when looking at the partial solution for
timeslots < d. Together, this online procedure results
in a series of matchings My for d = 0,1,...,t—1 that
form a feasible solution y for TAS.

More than that, we want to choose a sequence of
matchings that yields a large number of completed
jobs. Among all possible matchings for each day d,
which is the right one? We propose a greedy ap-
proach and compute in each step a matching, such
that the sum of profits we get from the respective
assignments for that day is maximized. More pre-
cisely, we construct for each day a weighted bipartite
graph where each possible assignment (edge) claims
a certain profit. In our algorithm, the profit is just
the amount of expertise per wage unit (efficiency).
The problem MAX WEIGHTED BIPARTITE MATCHING
can be solved to optimality by known algorithms in
polynomial time, e.g. if we apply the Hungarian
Method this step has a running time proportional to
O((|J'| +|U')?|E]) [28]. So we obtain the following
online Algorithm 1 for TAS with polynomial running
time O(t|J[3|U3).

This algorithm can be viewed as an online schema
that allows multiple extension, which we discuss in
the last section after some experimental evaluation
using the present basic version.

10



Algorithm 1 TAS-ONLINE
Input: A TAS-instance z = (¢, K, U, J)
Output: A feasible solution y for .

1. Set Ujq =none for all j € J and d € [t].
2: for d=0,1,...,t —1do » proceed day-by-day
3: J" = uncompleted jobs with r; <d
> active jobs
4: U’ = workers available on day d
> active workers

5: E=0 > edge set in bip. graph
6: for (j,i) € J' x U’ do
7 if i € U; then pass > ensures (c)
8: if e;x, == 0 then pass

> 4 has no expertise in j’s domain
9: if wir, > Cj — ¢; then pass > ensures (f)
10: profit < eix; [wir,
11: E «+ (j,1, profit)

12: My < MaxWeightedMatching(J',U', E)
13: for (j,1) € M, do
14: Ujd =1

15: return {j — U, | j € J}

> worker-task-assignment

5 Experimental Evaluation

With the hardness result we have already seen that
TAS has the KNAPSACK decision problem as a
subproblem. It is known from literature that no com-
petitive algorithm for the online version of KNAP-
SACK exists where items arrive one at a time [32].
An online algorithm is called competive if the ratio
of it’s performance and an optimal offline algorithm’s
performance can be bounded, a usual performance
measure for online algorithms [6]. It follows that
no competitive online algorithm for TAS exists as
well. Therefore, in order to evaluate TAS-ONLINE ex-
perimentally, we formulate alternative algorithms to
compare with.

5.1 Experimental Setup

5.1.1 Benchmarks

We evaluate the performance of TAS-ONLINE using
four benchmarks, with each benchmark extending the
previous with a new functionality. The first version
of the algorithm (RANDOM) builds a feasible solution
randomly and without any individual preferences of
workers that usually appear in a fully self-organized
system. We simply iterate over the available workers
and pick a feasible job.

Algorithm 2 RANDOM
Input: A TAS-instance x = (t, K,U, J)
Output: A feasible solution y for .

1. Set Ujq = none for all j € J and d € [t].

2: for d=0,1,...,t —1do » proceed day-by-day
3: J' = uncompleted jobs with r; < d
> active jobs

4: U’ = workers available on day d

> active workers
5: while U’ # () do
6: pick worker i € U’ randomly, remove it
7 J] = feasible jobs for worker i
8: pick job j € J! randomly
9: Ujg =i > worker-task-assignment

10: if ¢; > Q; then remove j from J'
> remove completed jobs
11: return {j — U; | j € J}

To obtain the feasible jobs for ¢ in line 7 we pro-
ceed as in lines 7 to 9 in TAS-ONLINE and addition-
ally check that j is still without worker assignment
for that day.

For the next version of the algorithm (RANDOM
EGOISTIC) we assume that workers try to realize a
larger wage with priority, thus modeling a typical
crowdsourcing environment, where workers are self-
appointed to tasks, trying to maximize their indi-
vidual profit [37]. To do so, we substitute line 8 in
the previous algorithm with the lines stated in Algo-
rithm 3.

In the next step (RANDOM EGOISTIC FILTER), we
extend RANDOM EGOISTIC with a filter that restricts
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Algorithm 3 RANDOM EGOISTIC

80: let ko, k1,... be the domains sorted decr. by i’s
wage

81: for k = ko, k1,... do

82: J! = feasible jobs for worker i from domain k
83: if J! # () then

84: pick job j € J! randomly

85: break

the jobs that are offered to each worker based on ex-
pertise. This models the practice employed by many
crowdsourcing platforms today, where workers can
only access a task if they successfully pass a “screen-
ing” (realized through the use of performance levels,
golden data, reputation, or other means across the
different platforms) [10, 21], which allows to expect a
substantial contribution to the job’s quality by these
workers. This “screening threshold” is expressed by
an additional parameter 0 < factor < 1 which de-
termines the minimal expertise needed. Therefore
we additionally substitute line 7 with the following
lines.

Algorithm 4 RANDOM EGOISTIC FILTER

70: J! = feasible jobs for worker i
71: remove all j from J! with e;r, < (Q; - factor)

As as last variation of Algorithm 2 we choose a
job for some worker completely deterministically with
a greedy rule: Job j is assigned to worker i if the
marginal contribution in terms of quality is maximal
among all feasible jobs for worker ¢. This amounts to
replacing line 8 in Algorithm 2 by the following line
(an leave line 7 unchanged).

Algorithm 5 ONLINE GREEDY
80: pick job j € J| such that e;x; — q; is maximal

Note that all algorithms so far have the online
property for TAS. Finally, for reasons of comparison,
we use an offfine algorithm (Algorithm 6) that does
not have to proceed day-by-day but has access to the
complete input at once. So this clairvoyant algorithm
knows in advance what workers will be available on
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what days of the scheduling period, and also what
jobs will eventually enter the system. It proceeds
job-by-job and treats each job as a knapsack that has
to be packed with workers (items) that are available
after the job’s release date. To obtain such a pack-
ing, it calls an optimal algorithm for MAX KNAPSACK
that returns a packing with minimal cost such that
the quality threshold is reached. Then, for the work-
ers from this packing (= worker-task assignment), a
sequencing on the timeline w.r.t. their availability is
fixed, before the next job is considered.

The algorithm has two more parameters that in-
fluence the way workers are selected for input to the
knapsack algorithm for a job j. With lookahead we
specify the interval of timeslots [r;,r; + lookahead)
from which the available workers are chosen in order
to control the maximum flow time of each job. Sec-
ondly, we use minavail to ensure that each worker
has at least minavail-many free timeslots remaining
in the above interval in order to facilitate the alloca-
tion of timeslots afterwards.

Algorithm 6 TAS-OFFLINE
Input: A TAS-instance z = (¢, K, U, J)
Output: A feasible solution y for x.

1: Set Ujq = none for all j € J and d € [t].
2: for j € J do > ordered by release dates

3: Uj = feasible workers for j

4: for i € U} do

5: if notminavailin [r;,r;+lookahead] then
6: remove i from U}

7: W; < DynProgKnapsack(U;, Q;, C;)

8: for i € W; do > sorted decr. by expertise
9: d = earliest available timeslot > r; for i
10: Ujg =i > worker-task-assignment
11: aiqg =0 > set ¢ unavailable on d

12: return {j — U; | j € J}

The offline algorithm does not guarantee optimal
solutions for TAS for various reasons. However, it
is designed to complete as many jobs as possible by
the particular use of offline information and by in-
corporating optimal solutions to the knapsack sub-
problems. Note that due to the standard dynamic-



programming (DP) algorithm for MAX KNAPSACK
this is only a pseudo-polynomial time algorithm (the
DP-table has dimension |U| x C; for each job) [25].
While we observe that this still yields tolerable run-
times for realistic input sizes, it is also possible to
scale down the range of cost thresholds, or to use a
fully polynomial-time approximation-scheme instead,
if runtime becomes crucial.

5.1.2 Evaluation Metrics and Experiments
Overview

To evaluate our approach we compare the algorithms
principally in terms of the objective function value
(i.e. the metric that the TAS model is meant to
optimize), both as an absolute number and as a per-
centage of the upper bound of completable jobs. We
also use four auxiliary metrics, meant to provide more
information on the algorithm’s behavior: the number
of assigned workers, flow time, budget utilization and
quality reached.

We conduct two types of experiments: i) synthetic
(sections 5.2 and 5.3), where we experiment with a
known simulated crowdsourcing instance and its vari-
ations and ii) real-world (section 5.4), where we ex-
amine our model on an actual crowdsourcing plat-
form.

5.2 Synthetic Data Experiment
5.2.1 Simulation parametrization

We first experiment with synthetic data, which were
generated using the experimental result distributions
reported in [2], where AMT workers worked on the
complex task of news writing. For simplicity, all
modeling elements were generated in the [0.1] scale.
Worker expertise received a random value from a nor-
mal distribution with mean equal to 0.5 and a vari-
ance 0.15, while worker wage received a random value
from a normal distribution with mean equal to 0.5
and variance 0.2. For this set of experiments worker
acceptance was set equal to 1. Job quality threshold
was modeled using a beta distribution with a@ = 5,
B =1, so that most jobs require a quality of at least
0.6 of 1 and higher with only a tail of jobs requiring
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less. Job cost threshold was then modeled as lin-
early related to job quality. Worker and job arrivals
were modeled as Poisson processes with an average
A = 200 worker/day, and u = 20 jobs/day, respec-
tively. Overall, we simulated a timeline of 30 days,
during which 1000 workers (re)entered the system
and 600 jobs were requested, belonging to 10 knowl-
edge domains. So we have the following numbers in
terms of our model:

|t I Ul | 1]
730 [ 10 | 1000 | 600 |

5.2.2 TUpper bound calculation

First we compute an upper bound on the number of
ultimately completable jobs using the optimal DP-
algorithm for MAX KNAPSACK: Assume for each job
that this job is the first for which we compute a
worker-task assignment, i.e., all workers with at least
one available timeslot > 7; are possible knapsack
items regardless of any other assignments. Now if the
DP-algorithm does not find a packing within budget
and above the quality threshold with this input data,
then this job cannot be completed whatsoever. For
the present instance, it turns out that at most 515
out of the 600 jobs can be completed.

5.2.3 Quality experiments

We now conduct the quality experiments. In terms of
the objective function, we observe that TAS-ONLINE
does not reach the number of completed jobs of our
offline algorithm, but that it is significantly better
that the other online algorithms (cf. Table 1).

Table 1: Objective function (completed jobs)

Algorithm absolute | % of bound
RANDOM 2 0,39
RANDOM EGOISTIC 98 19,03
RANDOM EGO. FILTER 114 22,14
ONLINE GREEDY 82 15,92
TAS-ONLINE 355 68,93
TAS-OFFLINE 411 79,81




To get a more precise picture, we want to compare
these algorithms not only w.r.t. this single measure,
but also look at other characteristics. Next we ask
how many workers are assigned to each job, and how
long the flow times are, i.e., the number of times-
lots between release date r; and the latest assigned
worker for j (cf. Table 2). In both cases we take the
average values over all jobs in the system (not only
the completed ones).

Table 2: Number of assigned workers and flow time

Algorithm workers | flow time
RANDOM 4,77 4,77
RANDOM EGOISTIC 3,46 3,46
RANDOM EGO. FILTER 1,64 7,37
ONLINE GREEDY 3,56 2,91
TAS-ONLINE 3,31 3,31
TAS-OFFLINE 2,41 8,11

In cases where both values are the same, we only
have compact assignments per job without any free
slots in between. While TAS-ONLINE seeks this type
of assignments we note that TAS-OFFLINE creates no-
table slack times, presumably a price to pay for larger
number of completed jobs.

Now we state how much budget is used with these
assignments, and how much quality is reached, both
relativ to the given thresholds and on average over
all jobs in the system (cf. Table 3).

Table 3: Budget usage and reached quality in %

Algorithm budget | quality
RANDOM 88,16 60, 62
RANDOM EGOISTIC 92,05 90, 27
RANDOM EGO. FILTER 52,6 55,77
ONLINE GREEDY 91,44 87,12
TAS-ONLINE 94,35 | 97,76
TAS-OFFLINE 67,73 70,21

Due to its greedy nature TAS-ONLINE reaches very
high quality values including for incompleted jobs
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and exploits the given budgets to a large extend.

Finally, we show how the main performance mea-
sures develop over the time, see Fig. 1 for completed
jobs and Fig. 2 for reached quality. Interestingly,
we observe that the higher values in Fig. 1 for TAS-
OFFLINE appear towards the end of the scheduling
period. A possible explanation is that the lookahead
mechanism of this algorithms takes the end of the
timeline into account.

Job completion progress - Synthetic
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Figure 1: Job completion over time for each of the
five tested algorithms. The proposed algorithm TAS-
ONLINE manages to achieve more completed jobs
most of the time compared to its competitors. Time
unit expressed in days.

5.3 Scalability experiments

Next we perform a series of scalability experiments
to examine the robustness of our proposed algorithm
under varying conditions of the simulated instance.
Given that worker volatility is the most uncontrol-
lable factor in crowdsourcing, the two parameters
that we vary are: the available expertise and the
available number of workers. Each parameter is mod-
ified independently, while all the other parameters of
the baseline instance presented in section 5.2 are kept
the same. The variables that we measure are also the
same as those measured for the baseline instance and
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Figure 2: Average job quality over time for each
of the tested algorithms. The proposed algorithm
TAS-ONLINE manages to achieve higher quality per
time unit compared to its competitors. Time unit
expressed in days.

include the objective function, as well as budget uti-
lization, total flow time, number of assigned workers
per task and percentage of the average quality thresh-
old reached.

The scalability experimental results are illustrated
in Figures 3-5. For each of those figures the = axis
corresponds to the varied parameter, the y axis to
the measured variable and the vertical line at z = 1
corresponds to the results of the baseline instance
reported in section 5.2.3.

5.3.1 Overview of scalability experimental
results

Two main remarks can be drawn as an overview of
the scalability experiments. The first is about perfor-
mance: TAS-ONLINE is the highest performing among
its online competitors, both regarding the value of
the objective function, i.e. the metric that the al-
gorithm is meant to optimize, and on quality, with-
out significant compromises on any of the remaining
metrics. TAS-ONLINE is the only algorithm among
those examine to achieve this: whereas certain al-

gorithms come close to its performance for certain
metrics and parameter values, the same algorithms
are significantly low-performing in other metrics and
parametrizations. This result indicates that the pro-
posed algorithm has a better ‘value-for-money’ com-
pared to its competitors.

The second remark is about consistency: TAS-
ONLINE is not only more performant, but its perfor-
mance is consistent across the varying values of the
scalability experimental parameters. This result in-
dicates that the performance of the algorithm as de-
tailed in section 5.2.3 is not incidental but an inherent
property of the algorithm, and reinforces trust in the
algorithm’s future usage. In the following we present
a detailed analysis of the scalability experiments.

5.3.2 Scalability effect on Objective Func-
tion: TAS-ONLINE gets consistently more
jobs done

In Figure 3 we measure the value of the objective
function (i.e. the number of accomplished jobs) as we
modify expertise availability, and higher y axis val-
ues are better. As we can observe, the TAS family of
algorithms (both the online and the offline version)
are able to achieve and maintain higher performance
than their competitive algorithms, at all expertise
levels. For average expertise levels less than the base-
line instance TAS-OFFLINE is the best-performing al-
gorithm, followed closely by TAS-ONLINE, while for
expertise levels slightly higher than the baseline TAS-
ONLINE takes and maintains precedence. As it can be
expected, as the average worker expertise per knowl-
edge domain drops, the performance of all algorithms
drops steeply as well. Nevertheless, we can also ob-
serve that the TAS algorithms are more robust, in
the sense that they maintain their high performance
when the other algorithms already start losing theirs
(notice for example the almost unchanged perfor-
mance of TAS-ONLINE between x = 2 down to x = 1.2
compared to the steep performance drop of the other
algorithms in the same range).

A similar pattern can be observed when modifying
the worker availability parameter (Figure 4). In this
case t0o, TAS-ONLINE is by far the most performant of
all the online algorithms, surpassed only by its offline
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version. In fact, the performance difference between
TAS-ONLINE and the rest of the algorithms is quite
striking here, as TAS-ONLINE reaches approximately
60% of the objective function value while the rest of
the algorithms only reach 20%. A second interest-
ing remark that can be derived is that worker avail-
ability seems to have little effect on the algorithms
after a certain critical mass of crowd workers has
been gathered (which for our simulation corresponds
to z = 0.4, i.e. 40% of the population of the baseline
instance). These two observations (superiority of the
TAS-ONLINE and small effect of worker availability af-
ter a certain critical mass) also hold when we measure
the effect of the worker availability parameter on all
other variables of the scalability experiment. Follow-
ing this, and for reasons of brevity, we omit the rest
of the scalability figures corresponding to the worker
availability, and focus on the parameter of expertise
availability which seems to have the highest effect.

5.3.3 Scalability effect on Quality: TAS-

ONLINE achieves higher quality

Figure 5 illustrates the average task quality (ex-
pressed as the percentage of the quality threshold
reached) for every level of expertise of the crowd-
sourcing population, and higher y axis values are bet-
ter. We observe that TAS-ONLINE manages to achieve
the highest quality levels, surpassing even its offline
version, for all expertise levels. In fact, given a cer-
tain level of expertise (z = 1.2) and above, the al-
gorithm manages to surpass the quality threshold
set for the tasks. RANDOM-EGOISTIC and ONLINE
GREEDY are the second and third most performing
algorithms respectively, but unlike TAS-ONLINE they
achieve their high quality results, at the cost of ac-
complishing too few jobs, as it can be seen by juxta-
posing Figures 3 and 5.

5.3.4 TAS-

its

Scalability on other parameters:
ONLINE performs comparably to
competitors

Effect on cost. We now examine the effect that
the modification of expertise availability has on the
budget used by the allocation algorithms (Figure 6,
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smaller y axis values are better). As we may ob-
serve, TAS-ONLINE consumes most (= 90%) of its
available budget, at the same consumption level as
the ONLINE GREEDY, RANDOM and RANDOM EGOIS-
TIC algorithms. The RANDOM EGOISTIC FILTER and
TAS-OFFLINE algorithms seem to make a slightly bet-
ter usage of their budget. Nevertheless, the extra
cost consumed by TAS-ONLINE is small, especially as
expertise levels grow and more experts need to be
paid (i.e. for x > 1.2). The significance of this ex-
tra cost gets even smaller considering what we gain
in terms of the objective function (Figure 3), where
TAS-ONLINE consistently accomplishes more jobs (al-
most up to double for = 1.2) than RANDOM EGOIS-
TIC FILTER. As such, TAS-ONLINE has a much higher
‘value-for-mone’ (jobs done vs. cost ratio) compared
to its competitors.

Effect on Flow Time. Figure 7 shows the flow
time of the algorithms for varying levels of expertise
availability, and smaller y axis values are better. As
we may observe, the proposed TAS-ONLINE algorithm
behaves similarly to the rest of the online algorithms.
This shows that there is no trade-off of performance
for time, i.e. our algorithm does not achieve its higher
objective function values at the cost of flow time.

Effect on Number of Assigned Workers. Fig-
ure 8 shows the change in the average number of
workers per task, as we modify the availability of ex-
pertise, and lower values of the y axis are better.
Here, and for most algorithms, we observe a very
steep drop in the number of assigned workers, as the
average expertise of the crowd worker population in-
creases. This fact is to be expected, as the algorithms
need to assign multiple workers to achieve the quality
thresholds when expertise is scarce.

5.4 Real Data Experiment

To examine the effectiveness of the proposed algo-
rithm, we conducted a real world experiment. The
platform we used for this was CrowdFlower®. The
task we used was collaborative news article writing,
where workers from an initial hiring pool were asked
to build on each other’s content sequentially, enrich-

8http://www.crowdflower.com
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Figure 5: Quality reached vs. expertise availabil-
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Figure 7: Flow time vs. expertise availability.
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Figure 6: Budget availability vs. expertise avail-
ability.
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ing a news article text on a given topic. In more
detail, our experimental workflow consisted of three
steps.

In the first step we recruited a pool of 60 workers
and recorded their expertise, wage and availability.
To measure expertise, we asked each worker to com-
plete two short multiple choice tests, each compris-
ing 10 questions and measuring the workers’ know-
ledge skills on a particular topic of current interest,
i.e. "The FIFA 2015 corruption scandal” and ”Self-
driving cars” respectively. Each one of these topics
is considered a knowledge domain for the purposes of
our experiment. We also gave workers an estimation
of the effort that they would have to spend on the
second round of the task and asked them to provide
us with their required wage.

In the next round we split the hired pool of workers
randomly into two parts, one to be used by the bench-
mark and one by the optimization algorithm during
scheduling. We also created six Google documents for
each algorithm, three per knowledge domain, which
corresponded to the jobs that would have to be ac-
complished. The quality and cost thresholds, as well
as the release date for each job were set according
to the same job generation criteria used in the syn-
thetic experiments, and they were the same for the
jobs of the benchmark and the optimization algo-
rithm. In regards to the algorithms to be compared
we used RANDOM EGO. FILTER as benchmark with
factor = 0.3 (a worker was to be allowed to take a
job only if his expertise was at least 30% of the tar-
get job quality) and TAS-ONLINE as the optimization
algorithm. Finally we set the scheduling period to
t = 8 slots and the time unit to one day. Each day,
one worker would be invited to contribute to each
Google document, according to the benchmark and
the optimized algorithm. At the end of that day the
document would be locked for the particular worker
and sent for evaluation by a crowd of 50 independent
crowd workers (different than those used in the exper-
iments) to evaluate the job’s current quality. Then,
if the job had not surpassed its quality threshold and
not exhausted its budget, a new worker was invited
to work on the document.

At the end of the scheduling period, the results
were as follows: The benchmark algorithm achieved a

successful completion of 3 out of 6 jobs, while the op-
timization algorithm achieved successful completion
of 5 out of 6 jobs. As it was expected the bench-
mark algorithm either allowed workers of the mini-
mum necessary expertise to take a job, thus delaying
the jobs quality progress too much, or it starved the
job of budget. On the other hand TAS-ONLINE se-
lected workers in such a way as to improve job com-
pletion within the given time period. As illustrated in
Figures 9 and 10, similarly to the respective results
of the synthetic experiments, TAS-ONLINE achieved
higher average job quality and job completion per-
centages than the benchmark.
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Figure 9: Average job quality over time. The

proposed algorithm TAS-ONLINE manages to achieve
higher quality per time unit compared to the bench-
mark. Time unit expressed in days.

6 Discussion and Future Exten-
sions

The TAS model presented in this paper is the first
concrete attempt to incorporate time-sensitive opti-
mization in expert crowdsourcing. Our results, as
presented in the previous, indicate that this model
can improve the performance of crowdsourcing sys-
tems and help them utilize their human capital more
effectively. Nonetheless, several challenges still lie
ahead and many further extensions can be envisioned.
In this final section we briefly discuss how the pro-
posed TAS model and the TAS-ONLINE algorithm can
be adapted to address further challenging settings
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Figure 10: Job completion percentage over time. The
proposed algorithm TAS-ONLINE manages to achieve
higher job completion rates per time unit compared
to the benchmark. Time unit expressed in days.

that may appear in practice.

Budget flexibility. Our initial TAS model as-
sumes a fixed budget per job, set by the customers
before the job is launched. However certain com-
mercial platforms, like CrowdFlower allow jobs to go
above their initial budget, and this option could be
used in order to recruit better qualified workers dur-
ing the scheduling period. One simple approach for
adapting the TAS-ONLINE algorithm to the ‘flexible
budget option’ is to recompute the daily matchings
with alternating remaining budgets and explore their
effects. A second adaptation is allowing edges to stay
in the bipartite graph if the cost exceeds the remain-
ing budget by a given fixed percentage, which can
even be specified per job. Since we want to avoid
that the algorithm makes too much use of the addi-
tional budgets we can reduce the profit of such edges
accordingly. A multi-objective view of the optimiza-
tion problem can also be useful to reveal these budget
trade-offs.

Non-Acceptance of Assignment. The initial
TAS model assumes that worker availability does not
change, once the workers declare themselves available
for a specific day. An adapted version of this model
could be that workers can decline a certain assign-
ment or they may be marked as unavailable by the

system after a certain period, waiting for their re-
action, has timed-out. A natural adaptation of the
TAS-ONLINE algorithm to this problem is to perform a
partial recomputation of the matching for the specific
day, where all accepted assignments (workers and cor-
responding tasks) and all stalled workers are removed
from the graph. Note that this also allows to bring
in new workers and jobs that became available only
very recently within the day.

Job prioritizing. The current TAS model gives all
jobs the same priority. However some jobs may be-
come more urgent than others during the scheduling
period, for example in crowdsourcing systems dealing
with crisis response [18]. Job prioritization can be in-
corporated in the model based on a given deadline, on
the quality left to reach the threshold (jobs close to
threshold go first), or other criteria. Our TAS-ONLINE
algorithm uses a flexible profit function to rate all
feasible assignments per day. Therefore if some jobs
(or workers) become preferred over others, the profits
on the respective edges can be easily changed. This
change is possible for individual worker-task combi-
nations and it can additionally be adjusted every day
for a close progress control.

Quality aggregation model. Like many relevant
studies in the area (e.g. [14, 2]), our current TAS
model uses a sum function to calculate job quality,
assuming that a job’s quality is the sum of expertise
of the individual workers that have contributed to
the job. Nevertheless, and depending on the context,
this calculation mode may not always reflect correctly
a job’s quality. For instance in cases of highly sub-
jective tasks the quality of contributions of the same
worker may vary even on tasks belonging to the same
topic. In these cases, quality may need to be calcu-
lated in a different way, e.g. using crowd-based eval-
uations after each worker contribution, similarly to
our real-world experiment. Here we need to distin-
guish two cases of adaptation for our algorithm. The
first is incorporating a profit function that tries to
forecast the benefit from a certain assignment, prior
to that assignment. The second is incorporating an
extra mechanism that is responsible for determining
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the quality reached per job, day and assignment. The
extra costs associated with this mechanism can also
form part of the profit function. Both these adapta-
tion are feasible depending on the exact aggregation
model needed.

Learning. In our initial TAS model we consider
expertise as an inherent, fixed property of each
worker. For certain tasks however, like creative ones,
the expertise of a certain individual can develop over
time, and with the number of accomplished tasks, as
workers ‘learn by doing’ [9, 38]. An improved version
of the model could recognize this fact and perform an
adjustment of worker expertise over time. According
to this version, the expertise per worker needed by
the TAS-ONLINE during graph construction each day
could be the outcome of a previous learning process
(e.g. machine learning as in [29]). The online version
of the TAS algorithm is particularly well suited for
such an dynamic adjustment.

Order of workers per job. In our problem for-
mulation the order in which the assigned workers per
job are placed on the timeline is arbitrary (openshop
model), to simulate the first-come first-served mode
of functionality of typical crowdsourcing platforms.
It could nonetheless be reasonable for certain appli-
cations to require a specific order of workers, e.g. in a
decreasing order of expertise. A straightforward ap-
proach to adapt TAS-ONLINE to such a request is to
drop all the edges in the bipartite graph for each day
such that the only workers that remain assignable are
those that correspond to the order criteria. Again,
this can be adopted over time such that, e.g., each
job begins with an assignment of some workers with
sufficient but relatively small expertise, to leave room
and budget for enhancement.

Multiple assignments per worker and times-
lot. Constraint (a) of our examined TAS model al-
lows only one task per worker and timeslot. It may
be reasonable to relax this to some bounded num-
ber of tasks per worker and timeslot, which can also
be changed over time, for instance to allow multiple
assignments to more experienced workers. Currently
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TAS-ONLINE relies on computing daily matchings, and
the matching condition on the worker-side of the bi-
partite graph corresponds directly to constraint (a).
However by taking a closer look at how the weighted
matching are computed in terms of min-cost flow net-
works, we can observe that the capacities on source-
edges and sink-edges in the flow network are usually
set to 1 to enforce the matching conditions. If we
now allow larger values as capacities on sink edges
we can also compute worker-task assignments for the
relaxed condition of multiple assignments.

The above correspond to the main modifications
that could be made to adapt the proposed TAS
model and TAS-ONLINE algorithm to multiple real-
life situations, depending on the crowdsourcing plat-
form, population and type of jobs at-hand. As such
they could be used independently or in various com-
binations, as the starting points for further studies
in this promising new field of expert crowdsourcing
optimization.

7 Conclusion

In this paper we present TAS, a model that adds
the timeline and online perspective to task assign-
ment optimization in expert crowdsourcing. Using a
greedy scheduling algorithm, TAS-ONLINE, we show
that optimization under this model can significantly
improve expert crowdsourcing performance. Future
extensions to enable the TAS model to handle further
challenging settings include: include adding budget
flexibility, job and/or worker prioritizing, fine-tuning
the job quality aggregation mechanism, worker per-
formance variability over time, and multiple assign-
ments per worker /timeslot.
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