
Informatik-Bericht Nr. 2013-1

Schriftenreihe Fachbereich Informatik, Fachhochschule Trier

Student Sectioning for Fixed Timetables

M. Dostert⇤ A. Politz⇤ H. Schmitz⇤†

March 1, 2013

Abstract

Based on a detailed complexity analysis of various student-sectioning models we show
that the following fundamental question in student sectioning can be e�ciently decided in
polynomial time:

Is it possible to assign m students to k sectioned courses w.r.t. a given timetable
with l timeslots, such that the individual capacities of all sections are not exceeded
and no student has more than one appointment per timeslot?

For this setting we provide an algorithm to compute an optimal assignment of students to
sections in O(k2l2 log(sumA)) where sumA is the sum of all specified section capacities. We
also identify structural properties of solutions that allow their succinct representation. On
the other hand, we prove that adding any single of the following constraints turns the above
question into an NP-complete problem:

Course-selection constraint : Students select their courses from a larger set and this
selection must be respected.

Timeslot-constraint : Students have individual timeslot restrictions.

Multiple-event constraint : Sections may have multiple events, i.e., the same section is
assigned to more than one timeslot in the given timetable. There must be no timeslot
clashes between all section-events for each student.

Hence our investigation contributes to the practical solvability of student-sectioning prob-
lems and it gives insight into the location of the borderline between e�ciently solvable and
computational hard problem variations.

1 Introduction

We consider an aspect of educational timetabling that appears in schools and universities like-
wise. Here courses often have sections (sometimes called subevents) where the same content
is taught multiple times during a week, mostly due to capacity requirements. Usually no in-
formation about student-to-section assignment is known prior to timetabling because students
select courses, not a particular section of a course. Hence sectioned courses put extra challenges
on timetabling algorithms because a solution is a timetable plus a student-to-section assign-
ment – coming along with additional constraints. The latter typically comprise constraints like
maximum section-sizes and conflict-free timetables for the sectioned students. Algorithms on
various models with di↵erent combinations of constraints have been proposed in the literatur,
among them approaches where student sectioning is carried out before [AYH04, AH05, SH10],
during [AF89, Car00, MRB04, MM10] or after timetabling [AVCT00, CKL03]. In this paper we

⇤
Trier University of Applied Sciences, Germany

†
Corresponding author: h.schmitz@hochschule-trier.de

1

take a careful look at sectioning problems for fixed timetables, i.e., we consider ‘pure’ sectioning
problems that have a timetable already in the input. In this way we follow the post-timetabling
approach to student sectioning and we identify the additional computational e↵ort that origi-
nates from student sectioning.

Our models. We give an informal description of student-sectioning models considered
in this paper in order to summarize our results below, and begin with the Basic Student
Sectioning Problem (BSS), see Section 2 for a formal definition. Here a timetable for k
courses is given, and each course consists of a number of sections. There is one event for each
section scheduled in the timetable and each section has an individual maximum number of
possible participants. We would like to determine the maximum number of students that can
attend all k courses and assign them to sections in a way such that

(D) each student has at most one appointment per timeslot (disjoint-sections constraint), and

(M) the maximum sizes of all sections are not exceeded (maximum-capacity constraint).

Both constraints are very often part of student-sectioning models mentioned in the literature,
e.g. [AVCT00, CKL03, MM10]. As a small example consider the following timetable with three
sectioned courses, each section given by its capacity:

timeslot course c
1

course c
2

course c
3

t
1

10 ⇤⇤ 5 15⇤
t
2

10⇤ 5 ⇤⇤ 0
t
3

0 0 5 ⇤⇤
t
4

10 15⇤ 10

Without violating (D) or (M) we can assign 10 students to the sections (c
1

, t
2

), (c
2

, t
4

) and
(c

3

, t
1

) marked with ⇤, and another 5 students to the sections (c
1

, t
1

), (c
2

, t
2

) and (c
3

, t
3

) marked
with ⇤⇤. This assignment can not be extended any more because the remaining capacities are
in timeslots t

1

and t
4

only, but we want to assign students to k = 3 courses. However, there
exists a feasible assigment with more than 15 students, see example after Corollary 3.4. We call
BSS a basic model because we assume

• that students have to attend all scheduled courses,

• that students have no timeslot restrictions, and

• that there is only one event per section.

Moreover, it is assumed w.l.o.g. that there is at most one section per course and timeslot. Note
that if this is not the case, we may simply add the respective capacities and split the assigned
students arbitrarily after sectioning.

Observe that already constraints (D) and (M) catch key issues in student sectioning because
they reflect the interests of two main stakeholders: Students certainly want their schedules to
be conflict-free, while institutions need to consider their room capacities – the latter being the
main reason to have sectioned courses at all. Indeed, if only one of constraints (D) and (M)
is present, then it is easy to maximize the number of assigned students, but usually at the
expense of massively violating the interests of one of the stakeholders which in turns leads to
useless timetables: If only (M) is taken into account then the optimal number of students is the
minimum of the sums of all section capacities of each course, which is a trivial bound that no
solution can exceed. On the other hand, if only (D) is present then we can assign an arbitrary

2

number of students if and only if we can assign a single student at all, which in turn holds if
and only if there are not more courses than non-empty timeslots.

While the basic model BSS is well applicable in some scenarios, e.g., in curriculum-based
scheduling where all students attend the same courses, there may well be more constraints that
emerge from practice. So we also investigate extended versions of BSS by adding the following
input data and constraints, corresponding to the above limitations of the basic model:

(C) Students select their courses from a larger set of courses o↵ered, and this selection must
be respected (course-selection constraint).

(T) Students have individual timeslot restrictions, i.e., they must not be assigned to some
explicitly excluded timeslots (timeslot constraint).

(E) Sections may have multiple events, i.e., the same section is assigned to more than one
timeslot in the input timetable. The sectioning of students must be pairwise conflict-free
with respect to timeslot clashes between all section-events (multiple-event constraint).

We concentrate on these constraints since they (or slight variations of them) appear in most
models for student sectioning mentioned in the literature, often in combined form, e.g., [AF89,
Car00, AH05]. Adding these contraints to the basic model separately leads in a natural way to
the definition of BSS-versions BSS+(C), BSS+(T) and BSS+(E), respectively.

Our results. We begin in Section 2 with a careful modelling of sectioning problems in
terms of matchings in bipartite graphs, and describe feasible solutions as matchings between
courses and timeslots that must satisfy additional requirements. Our definitions of BSS and the
extended versions BSS+X constitute a uniform framework for sectioning problems which also
allows to talk about combined problems BSS+X forX✓ {(C), (T), (E)} in a natural but precise
way. Our complexity analysis of these decision problems in Section 3 reveals the borderline
between e�ciently solvable and NP-hard combinations of constraints, see Theorems 3.7 and
3.11, and Corollary 3.12, which can be summarized as follows:

NP-complete

e�ciently decidable
in polynomial time Basic Student Sectioning (BSS)

BSS+(T)BSS+(C) BSS+(E)

The polynomial-time decidability of BSS opens the possibility to evaluate candidate-timetables
as part of timetabling algorithms e�ciently with respect to this measure. To the best of our
knowledge, this is the first complexity analysis of student sectioning for fixed timetables – with
one exception: In [CKL03] the authors sketch a proof for NP-hardness of their model from
which one can conclude that also BSS+(E) is NP-hard. In their reduction, the number of
events per section is not limited. We strengthen this result for BSS+(E) and show that it is
NP-complete even if sections only have two events.

So it turns out that not all variations of student sectioning are hard, and we further exploit
this in Section 4 to compute also optimal solutions in terms of individual timetables for students
e�ciently. However, on input of a timetable with section capacities the number of assignable
students is usually not polynomially bounded in the input length, which implies that we can not
compute solutions e�ciently as a list that assigns a timetable to each student. We show that
there always exists an optimal solution that has only a small number of di↵erent timetables
for all assignable students. Together with a succinct representation of these solutions we finally
get a O(k2l2 log(sum

A

))-time algorithm that computes optimal solutions for BSS, and which is

3

truly polynomial in the input length. As a final result we show that it is NP-hard to determine
the minimal number of di↵erent timetables for a BSS-instance (Theorem 4.5). On the technical
side, our work is inspired by [dW85] where class-teacher models and course scheduling are
discussed with an emphasis on graph-theoretical models.

2 Problem Definitions

We fix some notations and formalize our problem definitions. Unless stated otherwise, all
variables i, j, k, l,m, . . . are non-negative integers. Let [k] = {1, . . . , k} for k � 0. Sets of
courses, timeslots and students are denoted as

C = {c
1

, . . . , c
k

}, T = {t
1

, . . . , t
l

} and S = {s
1

, . . . , s
p

},

respectively. If the context is clear we identify courses, timeslots and students simply by their
index, e.g., some course j 2 [k].

We model sectioning problems in terms of bipartite graphs with courses and timeslots as
node partitions. Let G = (V,E) with V = C [T be some undirected bipartite multigraph, i.e.,
E is a multiset of edges, each edge joining some node in C with some node in T . For v 2 V
denote the number of edges incident to v by d(v) as the degree of v, and denote by �(G) the
maximum degree of the nodes in G. For e 2 E we write m(e) for the number of edges e in
multiset E. A matching in G is a set of edges M ✓ E such that no two edges in M share a
common node. If |M | = k we say that M is a k-matching. We denote by C

M

(T
M

, resp.) the
set of nodes from C (T , resp.) that appear in M . A set M of matchings is called edge-disjoint
if all M 2M are pairwise disjoint, i.e., no instance of some edge appears in more than one M .
For one of the sectioning problems we also consider hypergraphs H = (C [T,E) where each
edge e is a subset of C [T with |e| � 2. Such a hypergraph is called bipartite if |e \ C| = 1
for all e. A matching in H is a subset of pairwise disjoint edges. The other notations apply
likewise.

All our sectioning problems have in common that (some encoding of) a timetable is part of
the input. We may assume in our context that such a timetable only comprises data relevant
for sectioning. So we refrain from taking teachers, rooms, equipment and other resources as
part of the input. On the other hand, we assume that a given timetable is complete in the sense
that all events for all sections are scheduled, and that all capacity data is provided. However,
timeslots without any sections can be omitted.

With P (NP, resp.) we denote the complexity class of all decision problems, that can
be decided (accepted, resp.) by some determinstic (nondeterministic, resp.) algorithm whose
running time can be upper bounded by some polynomial in the input length. For background on
complexity classes and the notion of NP-completeness we refer the reader to standard textbooks,
e.g. [GJ80, Pap94].

2.1 Formalization of the Basic Model

Recall that in the basic model each section has exactly one event, which allows to identify the
section of a course by its timeslot. So together with the section capacities we may represent
the input timetable as a matrix A = (a

i,j

) 2 INl⇥k where l is the number of timeslots, k is
the number of courses, and a

i,j

is the maximum size of the section for course c
j

scheduled in
timeslot t

i

. Note that a
i,j

= 0 if and only if there is no section of course c
j

in timeslot t
i

. We
denote by sum

A

the sum of all entries in A. E.g., the matrix of the introductory example is

4

just another representation of the input timetable as

A =

0

BB@

10 5 15
10 5 0
0 0 5
10 15 10

1

CCA .

Observe that we can understand such a matrix A immediately as the adjacency-matrix of
a bipartite multigraph G(A) = (C [T,E) where E is the multiset of edges e = {c

j

, t
i

} with
multiplicity m(e) = a

i,j

for i 2 [l], j 2 [k].
A sectioning solution from a single student’s point of view, who is attending all k courses,

are just k timeslots t
i

2 T (one for each of his courses), which in turn means that this student
attends the section of c

j

scheduled in t
i

. In terms of G(A) this is just a k-matching in G(A)
joining all nodes c

j

2 C with some timeslot t
i

2 T – while consuming one of the a
i,j

edges
e = {c

j

, t
i

}. Finally, an entire solution is represented as a set of k-matchings M which is
feasible if no edge is assigned to more than one student. Together, our basic model is formally
defined as follows.

Basic Student Sectioning Problem (BSS)
Input: A matrix A = (a

i,j

) 2 INl⇥k with l � k and some m.
Question: Is there a set M of edge-disjoint k-matchings in G(A) with |M| = m?

Observe that we may additionally require l � k since otherwise no solution exists due to
an unavoidable violation of (D). We define BSS here as a decision problem asking whether
at least m students can be sectioned with respect to timetable A. In Section 4 we will also
consider an optimization version of BSS where a solution with a maximum value of m needs to
be computed.

2.2 Additional Constraints

We now define more comprehensive models by adding constraints (C), (T) and (E) individually.
For the course-selection constraint (C) we assume that there is additionally some mapping
c : S ! P(C) specifying for each student the selected courses. To fulfill these requirements
there must be some assignment f of students to matchings (i.e., to their individual timetables)
such that the matched courses are the selected ones. On the other hand, we do not require any
more that each matching has cardinality k.

BSS+(C)
Input: A matrix A = (a

i,j

) 2 INl⇥k with l � k and some m. Additionally a set
of students S with |S| � m and a mapping c : S ! P(C) of students to
selected courses.

Question: Is there a set M of edge-disjoint matchings in G(A) with |M|=m, such
that there is some bijective function f : S !M with

(C) 8
s2S [f(s) = M) C

M

= c(s)] ?

Here we ask whether at least m students from S can be sectioned such that (C) holds. Note
that f is a partial function if |S| > m. Moreover, if all students select all k courses then we
can drop the additional input and BSS+(C) is just BSS. Next we extend BSS by the timeslot
constraint (T). Again we assume that there is some additional mapping t : S ! P(T) specifying
for each student the available timeslots. This time we need to ensure that all timeslots in each
students matching are among the available timeslots for this student.

5

BSS+(T)
Input: A matrix A = (a

i,j

) 2 INl⇥k with l � k and some m. Additionally a set
of students S with |S| � m and a mapping t : S ! P(T) of students to
available timeslots.

Question: Is there a set M of edge-disjoint k-matchings in G(A) with |M|=m, such
that there is some bijective function f : S !M with

(T) 8
s2S [f(s) = M) T

M

✓ t(s)] ?

Observe that we require k-matchings again and that BSS appears as a special case. Finally,
we want to model with BSS+(E) that sections may have multiple events in a given timetable.
So far we have identified a section of a course by the timeslot of its event in a given timetable.
Correspondingly, we now identify a section of a course by the set of timeslots of the events of
this section in a given timetable. This allows to model solutions in terms of matchings between
C and T again. Note that if two sections of the same course have the same set of timeslots
then we may safely unify both sections and add their capacities. So if there are at most r
sections per course then we may assume that some mapping g : C ⇥ [r] ! P(T) ⇥ IN specifies
for course c

j

and its section q with g(c
j

, q) = (T
j,q

, a
j,q

) the set of timeslots T
j,q

of all events
of section number q of course c

j

together with the maximum capacity a
j,q

of this section. This
representation of the input timetable replaces matrix A that we used before.

The sets of timeslots lead in a natural way to the notion of a bipartite multi-hypergraph
H(g) = (C [T,E), where the set E of hyperedges of H(g) contains all edges

e = {c
j

} [T
j,q

for all courses j and their sections q, each having multiplicity m(e) = a
j,q

.

BSS+(E)
Input: A set of courses C, a set of timeslots T , and some m, together with a

mapping g : C ⇥ [r] ! P(T) ⇥ IN specifying the sets of timeslots and
capacities of all sections.

Question: Is there a set M of edge-disjoint k-matchings in H(g) with |M| = m?

Recall that in a matching M 2M in hypergraph H(g) all edges are pairwise disjoint, i.e.,
there are no timeslot clashes if we understand M as a student’s timetable. So if we find m
edge-disjoint matchings we can assign m students to the sections of all k courses such that (E)
holds.

Together, we have defined a uniform framework to formally specify sectioning problems. The
notion of bipartite multigraphs common to all problem versions allows to talk about ’mixed’
versions BSS+X for X ✓ {(C), (T), (E)} in a natural but precise way. If (E) is in X then the
input timetable is represented as mapping g, and as matrix A otherwise. As an example, if we
want to specify that both (C) and (E) are present, we may use notation BSS+{(C), (E)} while
the following definition is understood:

6

BSS+{(C), (E)}
Input: A set of courses C, a set of timeslots T , and some m, together with a

mapping g : C ⇥ [r] ! P(T) ⇥ IN specifying the sets of timeslots and
capacities of all sections. A set of students S with |S| � m and a mapping
c : S ! P(C) of students to selected courses.

Question: Is there a set M of edge-disjoint k-matchings in H(g) with |M| = m, such
that there is some bijective function f : S !M with

(C) 8
s2S [f(s) = M) C

M

= c(s)] ?

3 Complexity Analysis

We give a complexity analysis of sectioning problems in order to identify ’easy’ and ’hard’
constraints.

3.1 Good News: The Basic Student Sectioning Problem is in P

A special case of BSS-instances (A,m) appears when all course-nodes c 2 C in G(A) have
maximum degree. Graphs with this property are called semiregular [CH82].

Definition 3.1 Let G = (C [T,E) be a bipartite multigraph such that |C|  |T |. Then G is
semiregular if and only if d(c

j

) = �(G) for all c
j

2 C.

The following property of semiregular graphs is easy to verify and we state it for further
reference.

Proposition 3.2 Let G = (C [T,E) be a semiregular bipartite multigraph such that |C|  |T |.
Furthermore, let M be a set of matchings in G that form a partitioning of E. If |M| = �(G),
then every M 2M is a maximum matching with |M | = |C|.

Next we see that for every yes-instance (A,m) of BSS we find a semiregular subgraph of
degree m in G(A), and vice versa.

Lemma 3.3 For all A 2 INl⇥k with l � k and m � 0 it holds that (A,m) 2 BSS if and only if
G(A) has a semiregular subgraph G0 = (C [T,E0) with �(G0) = m.

Proof Let (A,m) be some BSS-instance and denote by G = G(A) = (C [T,E) its graph
representation with k = |C|  |T | = l. If (A,m) 2 BSS then there exists a set M containing
m edge-disjoint k-matchings of G(A). Now define G0 = (C [T,E0) with E0 =

S
M2MM . Then

d(c) = m for every node c 2 C in G0 because each matching M adds one edge incident to c.
Furthermore, since every M 2 M contains at most one edge incident to some t 2 T , we also
have d(t)  m for all t 2 T in G0. Therefore it holds that �(G0) = m.

Conversely, assume that there is some semiregular subgraph G0 = (C [T,E0) of G(A) with
�(G0) = m. So in G0 we have d(c) = �(G0) for any c 2 C. We apply König’s Lemma to
G0 and see that it can be partitioned into �(G0) edge-disjoint matchings M. We know from
Proposition 3.2 that every M 2M is a k-matching and since m = �(G0) we have (A,m) 2 BSS.

2

This lemma shows that the problem of deciding whether m students can be sectioned into
the k courses given in timetable A is equivalent to finding a semiregular subgraph in G(A)
that contains all courses and has maximum degree m. So the next question is how we can
determine whether or not G(A) has such a subgraph. Obviously, the answer is yes if G(A) itself
is semiregular.

7

Corollary 3.4 Let A 2 INl⇥k with l � k and m � 0. If G(A) is semiregular then (A,m) 2 BSS
for all m  �(G(A)).

Note that it is easy to check whether G(A) is semiregular when A is given: The sums of
all columns in A (= d(c) for all c 2 C) must be equal, and the sums of all rows (= d(t) for all
t 2 C) must not exceed this value. If G(A) is semiregular and we assign m = �(G(A)) students
to the sections of the k courses, then we have the special case that no capacities a

i,j

remain
unused.

Recall matrix A from the introductory example and consider a submatrix A0 with

A =

0

BB@

10 5 15
10 5 0
0 0 5
10 15 10

1

CCA and A0 =

0

BB@

5 0 15
10 5 0
0 0 5
5 15 0

1

CCA .

We easily verify that G(A0) is semiregular with �(A0) = 20, hence, by Lemma 3.3, we can
section 20 students w.r.t. timetable A such that (D) and (M) hold. We show next how to
determine for arbitrary instances whether G(A) has a suitable subgraph with help of a flow
network.

Definition 3.5 Let (A,m) be some instance of BSS. Then F (A,m) = (V,E, c) is a flow
network with source v

s

and sink v
t

defined as

V = C [T [{v
s

, v
t

} ,

E = C ⇥ T [{v
s

}⇥ C [T ⇥ {v
t

} and capacities

c(u, v) =

8
><

>:

a
i,j

if u = c
j

^ v = t
i

min(m,
P

l

i=1

a
i,j

) if u = v
s

^ v = c
j

min(m,
P

k

j=1

a
i,j

) if u = t
i

^ v = v
t

Observe that F (A,m) can be constructed e�ciently from (A,m).

Lemma 3.6 Let (A,m) be a BSS-instance with A 2 INl⇥k and l � k, and let f denote some
maximum flow in F (A,m) with value v(f). Then

(A,m) 2 BSS, v(f) = k ·m .

Proof We start by stating the capacity and flow-conservation constraints resulting from our
definition of the network.

i. capacity constraints

8
j2[k] : 0  f(v

s

, c
j

)  min(m,
X

i2[l]

a
i,j

) (1)

8
i2[l] : 0  f(t

i

, v
t

)  min(m,
X

j2[k]

a
i,j

) (2)

8
i2[l],j2[k] : 0  f(c

j

, t
i

)  a
i,j

(3)

ii. flow-conservation constraints

8
j2[k] : f(vs, cj) =

X

i2[l]

f(c
j

, t
i

) (4)

8
i2[l] : f(ti, vt) =

X

j2[k]

f(c
j

, t
i

) (5)

8

The value of some flow f in this network is determined by

v(f) =
X

j2[k]

f(v
s

, c
j

).

First, suppose (A,m) 2 BSS. By Lemma 3.3 there is a semiregular subgraph G0 = (C [T,E0)
in G(A) with �(G0) = m. So in G0 we have d0(c) = m for any c 2 C and d0(t)  m for any
t 2 T . We construct a flow f as follows:

f(v
s

, c
j

) = d0(c
j

) for j 2 [k],

f(t
i

, v
t

) = d0(t
i

) for i 2 [l] and

f(c
j

, t
i

) = m0({c
j

, t
i

}) for j 2 [k], i 2 [l].

Capacity constraint (1) holds because
P

i2[l] ai,j = d(c
j

) � d0(c
j

) = m, so for all j 2 [k] we have

f(v
s

, c
j

) = d0(c
j

) = m = min(m,
X

i2[l]

a
i,j

) . (6)

For constraint (2) note that for all i 2 [l] it holds that
P

j2[k] ai,j = d(t
i

) � d0(t
i

) and m � d0(t
i

),
so also in this case we have

f(t
i

, v
t

) = d0(t
i

)  min(m,
X

j2[k]

a
i,j

) .

Constraint (3) holds because for all i 2 [l], j 2 [k] we have

f(c
j

, t
i

) = m0({c
j

, t
i

})  m({c
j

, t
i

}) = a
i,j

.

To see that conservation constraint (4) holds note that

f(v
s

, c
j

) = d0(c
j

) =
X

i2[l]

m0({c
j

, t
i

}) =
X

i2[l]

f(c
j

, t
i

) .

The same is true for constraint (5) with a similar argument. The value of f is

v(f) =
X

j2[k]

f(v
s

, c
j

) =
X

j2[k]

d0(c
j

) = k ·m

which is maximum, because we see in Eq. (6) that f saturates all capacities of all outgoing
edges of the source v

s

.
Now assume conversely that f is some maximum flow in F (A,m) with v(f) = km. We

define a matrix A0 2 INl⇥k by
a0
i,j

= f(c
j

, t
i

)

for j 2 [k] and i 2 [l], and consider graph G0 = G(A0). Capacity constraint (3) guarantees
a0
i,j

= f(c
j

, t
i

)  a
i,j

so G0 is a subgraph of G(A). Next we show that G0 is semiregular.
Observe that for all j 2 [k] it holds that

d0(c
j

) =
X

i2[l]

a0
i,j

=
X

i2[l]

f(c
j

, t
i

) = f(v
s

, c
j

)

where the latter is due to constraint (4). From v(f) =
P

j2[k] f(vs, cj) = km and c(v
s

, c
j

)  m

by construction of F (A,m) we get f(v
s

, c
j

) = m. So together we see that d0(c
j

) = m for all
j 2 [k].

9

It remains to show that d0(t
i

) is at most m for all t
i

2 T . With constraint (5) we have

d0(t
i

) =
X

j2[k]

a0
i,j

=
X

j2[k]

f(c
j

, t
i

) = f(t
i

, v
t

) .

We apply constraint (2) and get

d0(t
i

) = f(t
i

, v
t

)  min(m,
X

j2[k]

a
i,j

)  m .

Since �(G0) = m we obtain from Lemma 3.3 that (A,m) 2 BSS. 2

Since a maximum flow can be computed in polynomial time, we have the following theorem.

Theorem 3.7 BSS is in P.

Proof We summarize our investigations with the decision procedure BSS(·) given in the
following listing.

Input: An instance (A,m) of BSS with A 2 INl⇥k, l � k and m � 0.
Output: False, if (A,m) 62 BSS, and a witnessing maximum flow in F (A,m) otherwise.

1: function BSS(A, l, k,m)
2: F make flownetwork(A,m, l, k) . According to Def. 3.5
3: f

max

 max flow(F, v
s

, v
t

) . E.g. by the algorithm of Sleator and Tarjan [ST83]
4: if v(f

max

) 6= k ⇤m then . Correctness follows from Lemma 3.6
5: return False
6: return f

max

Observe that F (A,m) has O(k + l) nodes and O(kl) edges. The algorithm of Sleator and
Tarjan [ST83] has running time O(kl(k+ l) log(k+ l)) ✓ O(k2l2 log(k+ l)). Since the bit-length
of the input is at least k · l, the overall running time is polynomial in the input length. 2

Now consider that for any semiregular subgraph G0 of G(A) we have

�(G0)  min
j2[k]

(
X

i2[l]

a
i,j

)  sum
A

because every student has to be assigned to all courses. Thus we may compute the maximum
number m⇤ of assignable students for a given timetable A in polynomial time by a binary
search over the interval m 2 [sum

A

] with repeated calls to the previous algorithm. To compute
solutions in terms of timetables for these students (= k-matchings in G(A)) e�ciently is more
subtle because the number of matchings is usually not polynomially bounded. We come back
to this point in Section 4.

3.2 Bad News: Adding (C), (T) or (E) makes BSS NP-complete

We show the NP-hardness of the extended BSS-versions with polynomial-time many-one reduc-
tions from the NP-complete problem 3-Dimensional Matching [Kar72]. For finite, disjoint
sets X, Y and Z we say that M ✓ X ⇥ Y ⇥ Z is a 3-dimensional matching if for all distinct
triples (x

1

, y
1

, z
1

), (x
2

, y
2

, z
2

) 2M it holds that x
1

6= x
2

, y
1

6= y
2

and z
1

6= z
2

. It is known that

10

3-Dimensional Matching is NP-complete even in the special case when |X| = |Y | = |Z| = u
and M is a perfect matching with |M | = u.

3-Dimensional Matching (3-DM)
Input: Finite and disjoint sets X,Y, Z with |X| = |Y | = |Z| and a subset J ✓

X ⇥ Y ⇥ Z.
Question: Is there a perfect 3-dimensional matching M ✓ J ?

In all proofs of the following lemmas let X = {x
i

| i 2 [u]}, Y = {y
i

| i 2 [u]}, Z = {z
i

| i 2
[u]} for some u � 1 and J ✓ X ⇥ Y ⇥ Z be an arbitrary instance of 3-DM.

Lemma 3.8 3-DM is polynomial-time reducible to BSS+(C).

Proof The idea of the reduction is to encode each of the sets X,Y, Z separately as a set of u
courses, each of them having a single section with capacity 1. All the sections of the courses
for X go to timeslot t

1

, all sections of Y to timeslot t
2

and all sections of Z to t
3

. This can
be achieved if we define A = (a

i,j

)3⇥3u with a
i,j

= 1 for i 2 [3] and (i � 1) · u + 1  j  i · u,
and a

i,j

= 0 otherwise. So G(A) is a bipartite graph with node partitions C = {c
j

| j 2 [3u]}
and T = {t

i

| i 2 [3]}. Each (x, y, z) 2 J is regarded as a student with course-selection (x, y, z).
So we set S = J and define c(s) = (c

p

, c
u+q

, c
2u+r

) for all s = (x
p

, y
q

, z
r

) 2 S. Note that the
courses for X, Y and Z are disjoint due to o↵sets u and 2u. Moreover, we ask whether m = u
students can be sectioned. Clearly, the reduction function h with

h(X,Y, Z, J) = (A, u, J, c)

is computable in polynomial time.
Now assume that (X,Y, Z, J) 2 3-DM and let M ✓ J be a witnessing 3-dimensional match-

ing. For each (x
p

, y
q

, z
r

) 2M we define a set

M(p, q, r) = {(c
p

, t
1

), (c
u+q

, t
2

), (c
2u+r

, t
3

)}

of edges in G(A) which is also a 3-matching. So M = {M(p, q, r) | (x
p

, y
q

, z
r

) 2M} is a set of
matchings in G(A) with |M| = u. All sets in M are edge-disjoint because any two elements in
M di↵er in all three components. The mapping f : J !M with f((x

p

, y
q

, z
r

)) = M(p, q, r) for
all (x

p

, y
q

, z
r

) 2M is bijective and we have C
M(p,q,r)

= {c
p

, c
u+q

, c
2u+r

} = c((x
p

, y
q

, z
r

)), hence
h(X,Y, Z, J) 2 BSS+(C).

Conversely, if (A, u, J, c) 2 BSS+(C) let M be an edge-disjoint set of u matchings in G(A)
such that (C) holds, witnessed by some bijective f : J !M. Define M = f�1(M) ✓ J . Then
|M | = u and any two triples in M di↵er in all three components because the matchings in M
are edge-disjoint and all edges in G(A) have multiplicity 1. So M is a perfect 3-dimensional
matching and hence (X,Y, Z, J) 2 3-DM. 2

Observe that the reduction function maps only to instances where each course has just one
section and where no timeslot clashes can occur, i.e., the disjoint-section constraint (D) is always
fulfilled. So to obtain NP-hardness it is enough if (M) and (C) are present, and if students are
limited to choose three courses - even if there are no sectioned courses at all.

Lemma 3.9 3-DM is polynomial-time reducible to BSS+(T).

Proof The idea of the reduction is very similar to the previous proof, we just exchange the
roles of courses and timeslots. So A is the transposed matrix of the one before and G(A) has

11

node partitions C = {c
1

, c
2

, c
3

} and T = {t
i

|i 2 [3u]}. Each (x, y, z) 2 J is then regarded
as a student again, whose available timeslots are the timeslots of sections x, y, and z. So we
set S = J and define t(s) = (t

p

, t
u+q

, t
2u+r

) for all s = (x
p

, y
q

, z
r

) 2 S. Again, the reduction
function h with

h(X,Y, Z, J) = (A, u, J, t)

is computable in polynomial-time. We omit the rest of the proof since it is equal to the previous
proof. 2

Notice that this time h maps only to instances with 3 courses and again no timeslot clashes
can occur. So to obtain NP-hardness it is enough if (M) and (T) are present, and if the number
of courses is limited to three.

Lemma 3.10 3-DM is polynomial-time reducible to BSS+(E).

Proof The intention of the reduction is to encode X as a set of u courses and the sets Y
and Z are regarded as two disjoint sets of u timeslots. Each triple (x, y, z) 2 J represents
a section of course x with two events scheduled in timeslots y and z and having capacity 1.
Hence the number of sections of some course x is equal to the number of triples in J with x
as first component. For all x

p

2 X and i 2 [v] with v = |{(x, y, z) 2 J | x = x
p

}| we set
g(c

p

, i) = ({t
q

, t
u+m

}, 1) if (x
p

, y
q

, z
m

) is the i-th tripel in J with first component x
p

. Observe
that in this case H(g) is a bipartite hypergraph with node partitions C = {c

j

| j 2 [u]} and
T = {t

i

| i 2 [2h]}. We define the reduction function h as

h(X,Y, Z, J) = (X,Y [Z, 1, g)

which asks whether a single student can be sectioned, and which is computable in polynomial
time.

Now assume that (X,Y, Z, J) 2 3-DM and let M ✓ J be a witnessing 3-dimensional match-
ing. We define a set

B = {{c
p

, t
q

, t
u+m

} | (x
p

, y
q

, z
m

) 2M}

of edges in H(g) which is also a u-matching in H(g) because all triples in M di↵er in all
components. So h(X,Y, Z, J) 2 BSS+(C) witnessed by M = {B}.

Conversely, if (X,Y [Z, 1, g) 2 BSS+(C) let M = {B} with u-matching B in H(g). We
define a set

M = {(x
p

, y
q

, z
r�u

) | {c
p

, t
q

, t
r

} 2 B}

and see that any two triples in M di↵er in all three components because B is a matching in
H(g). So M is a perfect 3-dimensional matching and hence (X,Y, Z, J) 2 3-DM. 2

This time reduction function h maps only to instances where each section has exactly two
events and only one student is considered, i.e., the maximum-capacity constraint (M) can not
be violated for the existing sections. So to obtain NP-hardness it is enough if (D) and (E) are
present, if the number of sections is limited to two and if a single student needs to be sectioned.

Theorem 3.11 All problems BSS+(X) for X2 {C,T,E} are NP-complete.

12

Proof We have shown the lower complexity bounds for these problems in the preceeding
lemmas and it remains to argue that they are all members of NP. To do so we sketch a
nondeterministic algorithm only for BSS+(C) since there are similar algorithms for the other
problems. We use the notations from the definition of BSS+(C) to denote the input data.

1. Choose nondeterministically a subset S0 ✓ S with |S0| = m. O(|S|)

2. For each student s 2 S0 construct a set M
s

as follows: O(m · |C| · |T |)

(a) For each course c 2 c(s) select nondeterministically a timeslot t 2 T and add (c, t)
to M

s

.

(b) Reject if some timeslot appears twice in M
s

.

3. For all (c
j

, t
i

) 2 C⇥T count the occurences of (c
j

, t
i

) in all sets M
s

. Reject if this number
exceeds a

i,j

. O(|C|2 · |T | ·m)

4. Accept.

Note that the running time on a single computation path is polyomially bounded in the
input length, so BSS+(C) 2 NP. 2

Observe that if we add more constraints to one of these problems, then an NP-complete
problems appears as a special case. The upper bound can be shown similarly to algorithm in
the previous theorem. So we have:

Corollary 3.12 All problems BSS+X for non-empty X✓ {C,T,E} are NP-complete.

4 Succinct Solutions for BSS

We investigate in this section how to e�ciently compute solutions for BSS in terms of individual
timetables for the optimal number of students. We have already mentioned in Section 2 that
we can interpret a k-matching M 2M in G(A) as such a single students timetable. Let us first
recall from Section 3 what we can do e�ciently so far if the input timetable A is given:

• Compute the optimal number of students m⇤ with a binary search over m and subsequent
calls to algorithm BSS(·) stated in Theorem 3.7.

• Get the maximum flow f⇤
max

in F (A,m⇤) from this algorithm.

Furthermore, we can construct from f⇤
max

a submatrix A0 of A such that G(A0) is semiregular
and m⇤ = �(G(A0)). For this we just set

a0
i,j

= f⇤
max

(c
j

, t
i

)

for all (c
j

, t
i

) 2 C ⇥ T . The advantage of A0 over the original A is that the solution M we
are looking for is a partitioning of the edges in G(A0), i.e., no capacities in A0 remain unused.
Coming back to our running example, this gives us matrix A0 stated after Corollary 3.4.

It is easy to see that in this case edge-partitioning is the EDGE-COLORING problem with
�(G(A0))-many colors (cf. Proposition 3.2), so we could fall back on some standard algorithm
for the latter, see, e.g. [Sch98]. However, there is a major drawback with this approach if
complexity is considered. This is because all known EDGE-COLORING algorithms have
factor |E| in their running time, but the number of edges in G(A0) is not polynomially bounded

13

in the bit-length of input A. Note that there can be as many as O(sum
A

) edges which can
only be bounded pseudo-polynomially in the input length. This is a substantial aspect since
in practice rather large sums of capacities occur. In our small example G(A0) has already 60
edges. Moreover, as result we would get a long list of matchings for all students, whose size can
only be bounded pseudo-polynomially as well. For our example this is

s
1

! ((c
1

, t
2

), (c
2

, t
4

), (c
1

, t
1

))

s
2

! ((c
1

, t
2

), (c
2

, t
4

), (c
1

, t
1

))
...

s
11

! ((c
1

, t
4

), (c
2

, t
2

), (c
1

, t
1

))
...

s
20

! ((c
1

, t
1

), (c
2

, t
4

), (c
1

, t
3

))

So our goal in this section is to find an algorithm for optimal solutions that is truly polynomial
in the bit-length of input A. For this, a succinct representation of solutions M is needed.

4.1 E�cient Computation of Solutions

It will turn out that there is always an optimal solution that has only a small number of
di↵erent student timetables M 2M. Together with the fact that in the BSS setting students
are indistinguishable, it will be enough to compute the number of students that follow each of
these timetables. We say that two matchings M,M 0 2 M in multigraph G(A) are distinct if
they do not comprise the same set of edges.

Definition 4.1 (Succinct solution) Let A be some BSS-matrix such that G(A) is semireg-
ular and let M be a set of distinct k-matchings in G(A). A function f : M ! IN is called a
succinct solution for A, if

P
M :{cj ,ti}2M f(M) = a

i,j

for all j 2 [k], i 2 [l].

This condition ensures that the sum of all students that follow the distinct student timetables
in M is exactly the maximum number of students that can be assigned to A. A succinct solution
for our running example A0 is

((c
1

, t
2

), (c
2

, t
4

), (c
1

, t
1

)) ! 10

((c
1

, t
4

), (c
2

, t
2

), (c
1

, t
1

)) ! 5

((c
1

, t
1

), (c
2

, t
4

), (c
1

, t
3

)) ! 5

assigning the optimal number of 20 students to a small number of di↵erent student timetables.
We now state the algorithm to compute such a succinct solution e�ciently. Note that the
algorithm is underspecified in the sense that it is not clear yet how to compute in line 9 a
matching that saturates all nodes of maximal degree. We come back to this in the theorem
below.

Lemma 4.2 Algorithm opt solution is correct and the while-loop in line 8 has at most k(l+1)
iterations.

Proof Since we have already shown the correctness of the first part of the algorithm, we are
left with the while-loop. We show by induction on the maximal degree �(G) of G = G(A) in
line 8 that the while-loop computes a succinct solution for A if G is semiregular. If �(G) = 0,
then f = ; is the only feasible solution.

14

Input: A BSS-timetable A with A 2 INl⇥k and l � k.
Output: A succinct solution f for the maximum number of assignable students.

1: function opt solution(A, l, k)
2: d min

j2[k](
P

i2[l] ai,j) . upper bound for number of students
3: m⇤, f⇤

max

 bin search(0  m  d,BSS(A, l, k,m)) . optimal number of students
4: A 0

l⇥k

5: for each (c
j

, t
i

) in C ⇥ T . reduce matrix to semiregular subgraph
6: a

i,j

 f⇤
max

(c
j

, t
i

)

7: f ;
8: while �(G(A)) 6= 0 do
9: M some k-matching in G(A) saturating all nodes of maximal degree

10: n min(min{cj ,ti}2M (a
i,j

),min
ti2T\TM

(�(G(A))� d(t
i

)))
11: for each {c

j

, t
i

} in M
12: a

i,j

 a
i,j

� n

13: f(M) n

14: return f

Now suppose that the while-loop computes a succinct solution for any semiregular graph
G0 = G(A0) with �(G0) < �(G) and we want to show this fact for G.

Since G is semiregular, there exist �(G)-many k-matchings that partition the edge-set of
G. There are at most k nodes t

i

2 T with d(t
i

) = �(G), so matching M in line 9 exists and we
have d(t

i

) < �(G) for those t
i

that are not saturated by M . So with the fact that a
i,j

� 1 for
any edge {c

j

, t
i

} occuring in M , we have n > 0 in line 10.
In lines 11 and 12 we construct a new matrix A0 by removing from A the k edges from M ,

each edge n times. And since this n is not greater than the number of times any edge e 2 M
occurs in multiset E, we see that G0 = G(A0) is a subgraph of G. Next we show that G0 is again
semiregular. First observe that for the degree of any c

j

2 C in G0 we have

d0(c
j

) = �(G)� n

since all these nodes are saturated by M . For any t
i

2 T
M

it holds that

d0(t
i

) = d(t
i

)� n  �(G)� n

because this node is saturated and d(t
i

)  �(G). Finally, consider some node t
i

2 T \T
M

. Here
we have d0(t

i

) = d(t
i

) and thus by the definition of n it holds that

n  �(G)� d(t
i

) = �(G)� d0(t
i

)

and therefore d0(t
i

)  �(G)� n. Hence G0 is a semiregular subgraph of G with

�(G0) = �(G)� n < �(G) . (7)

We can apply the hypothesis and obtain that the remaining iterations of the while-loop
compute a succinct solution f 0 : M0 ! IN for a set M0 of distinct k-matchings in G(A0), i.e., for
all j 2 [k], i 2 [l] we have

P
M

0
:{cj ,ti}2M 0 f 0(M 0) = a0

i,j

. It remains to show that M = M0[{M}
and f = f 0 [{M ! n} is a succinct solution for A. We first argue that M 62M0. By definition
of n, at least one of the following two conditions holds:

15

i. n = a
i,j

for some {c
j

, t
i

} 2M .

Then a0
i,j

= 0 and therefore no matching in M0 can contain an edge {c
j

, t
i

}.

ii. n = �(G)� d(t
i

) for some t
i

2 T \ T
M

So M has no edge {c
j

, t
i

}, but all matchings in M0 must saturate t
i

because by Eq. (7)
we have �(G0) = d(t

i

) = d0(t
i

).

Hence f is well-defined. Now observe that for all edges {c
j

, t
i

} 2M we have

f(M) +
X

M

0
:{cj ,ti}2M 0

f 0(M 0) = f(M) + a0
i,j

= a
i,j

which shows that f is a succinct solution for A. This completes the induction.
We conclude our analysis and show a bound on the number of iterations of the while-loop.

To do so we count how often conditions i. or ii. can hold before the loop terminates. In case
i. only (k · l) entries of A can be set to zero before the loop terminates with A = 0. If case
ii. applies then t

i

is a node of maximum degree for all matrices A0 in all forthcoming iterations.
Since a semiregular matrix can have at most k nodes from T with maximum degree, this means
that case ii. can occur over all iterations at most k times. Together, this gives the stated bound
on the number of iterations. 2

Theorem 4.3 Let A be a BSS-timetable with A 2 INl⇥k and l � k, and let a
max

denote the
maximum entry in A. Algorithm opt solution computes a succinct solution with the optimal
number of assignable students in O(k2l2 log(sum

A

)).

Proof It remains to establish the upper bound on the running time. The value of d in line 2 is
computable in O(kl) and the value of d is bounded by O(sum

A

). So by Theorem 3.7 the binary
search in line 3 can be carried out in O(log(sum

A

)k2l2 log(k+ l)). Lines 4 to 7 are in O(kl) and
we already know that the while-loop has at most k(l+1) iterations. Next we need to argue how
we can find matching M in line 9. Since we only need a single k-matching we can construct a
graph G0 from A which has a single edge (i, j) if a

i,j

> 0. Note that the number of edges in
G0 is bounded by O(kl) as opposed to the number of edges in G(A0). We use the algorithm
by Cole and Hopcroft [CH82] to find a k-matching in G0 that saturates all nodes of maximum
degree. The running time of this algorithm on input G0 is bounded by O(kl log k). The other
statements in the body of the while-loop have smaller running times, so the while-loop is in
O(k2l2 log k). Hence the overall running time is dominated by the binary search which can be
simplified to O(k2l2 log(sum

A

)). 2

Observe that the given bound is polynomial in the bit-length of A. But the theorem also gives
some insight into the structure of BSS-solutions: Although the number of sectioned students
can be large, we can e�ciently compute an optimal solution with not more than k(l+ 1) many
distinct student-timetables.

Corollary 4.4 For any BSS-timetable A there exists an optimal succinct solution f : M! IN
with |M|  k(l + 1).

16

4.2 Minimizing the Number of Di↵erent Student-Timetables is NP-hard

A small number of di↵erent student-timetables is a reasonable goal in student sectioning since
it has some advantages for students (study groups, car pools) and it simplifies administration.
We make this question precise with the following problem definition.

MIN-BSS
Input: A matrix A = (a

i,j

) 2 INl⇥k with l � k such that G(A) is semiregular, and
some m  k(l + 1).

Question: Is there a succinct solution f : M! IN for A with |M| = m ?

It seems that the problem of finding a solution with a minimum number of di↵erent timetables
is much harder than finding a solution with a small number.

Theorem 4.5 MIN-BSS is NP-complete.

Proof Observe that we can nondeterministically guess all sets M of k-matchings of size m
and assign some value f(M)  sum

A

to all M 2 M. To check whether the condition from
the definition of succinct solutions holds for this choice of f can be done deterministically in
polynomial time, so MIN-BSS is in NP. We show hardness with a polynomial-time many-one
reduction from the NP-complete problem Sum of Subsets (SOS) [GJ80]. Let (a, k) be some
SOS-instance with a = (a

1

, . . . , a
m

) 2 INm, a
i

> 0 and k 2 IN. Then (a, k) 2 SOS if and only
if there exists some I ✓ [m] with

P
I

a
i

= k. We may assume w.l.o.g. that 0 < k  s since
otherwise (a, k) is trivial.

Denote s =
P

i2[m]

a
i

as the sum of the components of a. Define reduction function h as

h(a, k) = (B,m) such that B 2 IN(m+2)⇥3 with rows b
i

given by

b
i

=

8
<

:

(0, a
i

, 0) for i 2 [m],
(k, 0, s� k) for i = m+ 1, and
(s� k, 0, k) for i = m+ 2.

(8)

Obviously, h may be computed in polynomial time and G(B) is semiregular. We refer to a
3-matching in G(B) for short by M(x, y, z) = {{c

1

, t
x

}, {c
2

, t
y

}, {c
3

, t
y

}} using the saturated
nodes from T .

First assume (a, k) 2 SOS witnessed by I ✓ [m] and define a function f on

M = {M(m+ 1, i,m+ 2) | i 2 I} [{M(m+ 2, i,m+ 1) | i 62 I}

with f(M(m+ 1, i,m+ 2)) = f(M(m+ 2, i,m+ 1)) = a
i

for i 2 [m]. Note that each M 2M
is a 3-matching and that all elements in M are pairwise distinct, so it remains to show, that

X

{cj ,ti}2M

f(M) = b
i,j

(9)

for all j 2 [k], i 2 [l]. Consider some i 2 I and fix j = 2. Then

X

{c2,ti}2M

f(M) = f(M(m+ 1, i,m+ 2)) = a
i

= b
i,2

.

For j = 1 only egdes i = m+ 1 exist and

X

{c1,tm+1}2M

f(M) =
X

i2I
a
i

= k = b
1,m+1

= b
3,m+2

.

17

The same is true for j = 3 and i = m + 2. Similar arguments apply when i 62 I since
b
1,m+2

= b
3,m+1

=
P

i 62I ai = s� k.
Now assume (B,m) 2MIN-BSS and let f : M! IN be a succinct solution with |M| = m.

Consider the second column of B and let i 2 [m]. Since Eq. (9) holds we have

X

{c2,ti}2M

f(M) = b
i,2

= a
i

.

Because a
i

> 0 there is at least one M in each of the i sums and no two M in di↵erent sums
can be the same. Since |M| = m there must be exactly one such matching per i.

Now by the definition of B we have either M = M(m+1, i,m+2) or M = M(m+2, i,m+1)
for any M 2M. The index set

I = {i | M(m+ 1, i,m+ 2) 2M}

is a feasible solution for the SOS-instance because with Eq. (9) we have

X

i2I
a
i

=
X

i2I
f(M(m+ 1, i,m+ 2)) =

X

{c1,tm+1}2M

f(M) = b
m+1,1

= k .

2

We see from this reduction that the problem remains NP-complete even if the number of
courses is fixed to k = 3 in all instances.

References

[AF89] J Aubin and J A Ferland. A large scale timetabling problem. Computers and
Operations Research, 16(1):67–77, 1989.

[AH05] M Amintoosi and J Haddadnia. Feature selection in a fuzzy student sectioning
algorithm. Practice and Theory of Automated Timetabling V, pages 147–160, 2005.

[AVCT00] R Alvarez-Valdes, E Crespo, and J M Tamarit. Assigning students to course sections
using tabu search. Annals of Operations Research, 96(1):1–16, 2000.

[AYH04] M Amintoosi, H S Yazdi, and J Haddadnia. Fuzzy student sectioning. PATAT’04:
Proceedings of the 5th international conference on Practice and Theory of Automated
Timetabling, pages 421–425, 2004.

[Car00] Michael W Carter. A Comprehensive Course Timetabling and Student Scheduling
System at the University of Waterloo. In PATAT ’00: Selected papers from the
Third International Conference on Practice and Theory of Automated Timetabling
III. Springer-Verlag, August 2000.

[CH82] R Cole and J Hopcroft. On edge coloring bipartite graphs. SIAM Journal on
Computing, 1982.

[CKL03] E Cheng, S Kruk, and M Lipman. Flow formulations for the student scheduling
problem. Practice and Theory of Automated Timetabling IV, pages 299–309, 2003.

[dW85] D de Werra. An introduction to timetabling. European Journal of Operational
Research, 19(2):151–162, 1985.

18

[GJ80] Michael R Garey and David S Johnson. Computers and Intractability, 1980.

[Kar72] R M Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, January 1972.

[MM10] Tomáš Müller and Keith Murray. Comprehensive approach to student sectioning.
Annals of Operations Research, 181(1):249–269, March 2010.

[MRB04] Tomáš Müller, Hana Rudová, and Roman Barták. Minimal perturbation problem in
course timetabling. In PATAT’04: Proceedings of the 5th international conference
on Practice and Theory of Automated Timetabling. Springer-Verlag, August 2004.

[Pap94] Christos H Papadimitriou. Computational complexity. Addison Wesley, 1994.

[Sch98] A Schrijver. Bipartite Edge Coloring in O(m) Time. SIAM Journal on Computing,
1998.

[SH10] Heinz Schmitz and Christian Heimfarth. Cross-Curriculum Scheduling with Themis.
PATAT’10: Proceedings of the 8th international conference on Practice and Theory
of Automated Timetabling, pages 385–391, July 2010.

[ST83] D D Sleator and R Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 1983.

19

