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Abstract 
Finding the location and morphology of subcortical structures in the human brain is of 
crucial importance for deep-brain-stimulation (DBS). DBS of the subthalamic nucleus 
(STN) is used as a treatment for Parkinson’s disease (PD) requiring accurate target 
positioning. However, segmenting the STN automatically is difficult because it is not 
clearly visible in magnetic resonance imaging (MRI). In this publication an improve-

ment on the feasibility of an approach based on active shape models (ASM) for the au-
tomatic localisation of the STN is presented.
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1 Introduction 
1.1 Background 
Deep-brain-stimulation (DBS) is a common 
treatment for diseases such as dystonia or 
advanced Parkinson's disease (PD). DBS uses 
electrodes implanted into a particular brain 
region in order to stimulate or inhibit neural 
activity. 
 
In order to navigate the electrode accurately 
to the optimal position it is of crucial im-
portance for the physician to know the exact 
location of the electrode's target area prior to 
the surgery. For PD treatment the electrodes 
are usually implanted in the area of the sub-
thalamic nucleus (STN). A major problem of 
directly locating the STN is that it is not clear-
ly visible in magnetic resonance imaging 
(MRI). Therefore the STN is commonly lo-
cated using an indirect approach based on 
STN coordinates taken from an atlas or other 
literature [1]. However, using such a general 
procedure is inaccurate due to the wide varia-
bility of the STN shape and position amongst 
patients. Due to these reasons an individual 
STN localisation based on each patient’s MRI 
record is desirable. 
Our long-term aim is to develop a system that 
is able to assist physicians before and during 
DBS surgeries in order to increase the safety 
of the intervention and to reduce stress for 
both patient and surgeon. For the planning 
and navigation module of this system a 
(semi)-automatic STN segmentation is re-
quired. In this publication the first part to-
wards the automatic STN segmentation is 
presented.  
However, as the STN and the adjacent sub-
stantia nigra (SNr) are not visually discrimi-
nable in MRI, both structures are segmented 
together (referred to as SNr-STN) in our ap-
proach. The STN is then extracted from the 
SNr-STN using a statistical approach. 

1.2 Point Distribution Models 
To address the segmentation of the SNr-STN, 
a method based on active shape models 
(ASM) [2] has been chosen.  

1.2.1 Active Shape Models 
ASM require a set of N 3D training images 
(I1,...,IN), each image Ij being annotated with a 
set Xj of consistent landmarks that correspond 
to the same location of the SNr-STN in all 

images I1,...,IN. For each image Ij the land-
marks Xj consist of a column vector with 
length 3M, with M being the number of 
landmarks (constant) and the elements of Xj 
with index 1,...,M, (M+1),...,(2M) and 
(2M+1),...,(3M) representing the x, y and z 
coordinates of each landmark. These land-
marks form a discrete grid in 3D space that 
represents an approximation of the SNr-STN's 
shape. For data dimension reduction and 
modelling the shape variability of the SNr-
STN (represented by the landmarks), the prin-
cipal components of the covariance matrix of 
the landmarks are determined using principal 
component analysis (PCA). Let v1,...,vk be the 
eigenvectors of the covariance matrix of the 
landmarks that correspond to the k largest 
eigenvalues that were determined by the PCA. 
The number of eigenvectors k is chosen so 
that a given proportion of the training data's 
variance is expressed. With Xmean being the 
mean of X1,...,XN, the shape X' can be recon-
structed, with respect to the proportion of 
variance, using the approximation X' ≈ Xmean+ 
[v1,...,vk]p. As Xmean and [v1,...,vk] are constant, 
the reconstructed shape X' merely depends on 
the parameter vector p. In other words, p de-
termines the difference (with respect to 
[v1,...,vk]) of the reconstructed shape from the 
mean shape Xmean. The range of valid values 
for p is derived using the training data. The 
combination of the range of p, Xmean and 
[v1,...,vk] make the point distribution model 
(PDM). 

1.2.2 Landmark Generation 
In order to build a PDM that represents a suf-
ficient proportion of the shape variation of the 
SNr-STN with a minimum of eigenvectors 
v1,...,vk, one must emphasize that it is of cru-
cial importance that the landmarks are con-
sistent amongst the training images. As the 
SNr-STN structure does not have anatomical 
points that could easily be identified as unique 
landmarks, it is non-trivial to select the re-
quired landmarks by hand. Furthermore, it is 
unfeasible to select several dozens of land-
marks per image manually. 
To overcome this problem the landmarks are 
generated automatically from a set of manual-
ly segmented images (training data). For the 
manual segmentation of the SNr-STN the 
open-source segmentation software ITK-
SNAP [3] has been used. 
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1.3 Data and Preprocessing 
As training images 7 MRI scans have been 
acquired at the Centre Hospitalier de Luxem-
bourg using a General Electric (GE) Signa 
HDxt 3.0T scanner.  
The used scanning protocol is a GE SWAN 
sequence which is an implementation of SWI 
[4]. The images have been acquired using 116 
slices with an acquisition matrix of 512 x 512 
and a square field-of-view of 240mm result-
ing in a voxel size of 0.4688 x 0.4688 x 1.2 
mm.  
Before manual segmentation, the images have 
been registered onto the MNI152 T1 0.5mm 
standard template using a non-deformable 
mapping method provided by the ANTs regis-
tration package [5]. An affine transformation 
(linear transformation and translation) is used 
for the mapping in order to eliminate the ani-
sotropic voxel size and to represent all images 
in a common coordinate system. This com-
mon coordinate system will become helpful 
as a rough estimate of the SNr-STN orienta-
tion as described later. 

2 Methods 
The manual segmentation of the SNr-STN in 
the MNI152-aligned SWAN images has been 
performed by two neurosurgeons and two 
computer scientists. With that, expert 
knowledge of the shape of the SNr-STN is 
implicitly taken into account for the shape 
model. 
As the topology of the SNr-STN on the left 
side and on the right side is symmetric, the 
right SNr-STN is matched onto the left SNr-
STN using procrustes transform [6] (allowing 
translation, rotation and reflection). In order 
to reconstruct the right SNr-STN from the 
model, the inverse procrustes transform is 
applied to the landmarks that are reconstruct-
ed by the PDM. 
Let L1,...,LN be the manual segmentation of 
the left SNr-STN of the images I1,...,IN and 
R1,...,RN respectively be the manual segmenta-
tion of the right SNr-STN of the images 
I1,...,IN. L1,...,LN and R1,...,RN are three-
dimensional binary matrices of the same size 
as the original images I1,...,IN, having the val-
ue 1 at index x, y, z meaning that the corre-
sponding voxel of I with index x, y, z belongs 
to the SNr-STN structure and value 0 mean-
ing that the corresponding voxel of I does not 
belong to the SNr-STN structure. 
As only a fairly small amount of voxels, in 

proportion to the total number of voxels per 
image, belongs to the SNr-STN structure, for 
further processing the segmentation images 
are represented as a set of voxel coordinates 
which are represented as matrices l1,...,lN and 
r1,...,rN. Each matrix has three columns, being 
the x, y and z coordinate of the SNr-STN 
voxel. In anatomical terms of location the x 
axis points from left to right, the y axis points 
from posterior to anterior and the z axis points 
from inferior to superior. The mapping of all 
right SNr-STNs to left SNr-STNs using pro-
crustes transform leads to the combination of 
l1,r1,...,lN,rN, denoted as s1,s2,...,s2N-1,s2N. The 
landmark generation for each s in s1,...,s2N is 
performed independently. 

2.1 PCA 
The first step of the landmark generation is to 
determine the orientation of the SNr-STN 
structure s. In order to find the three main 
axes p1, p2 and p3 of s a PCA is used. 
Let m be the centre of gravity of s. The covar-
iance matrix C of s is defined as C = (s-m)T  
(s-m). Let e1, e2 and e3 be the eigenvectors of 
the covariance matrix C, that are sorted by 
their eigenvalues v1, v2 and v3 in descending 
order. The assignment of e1 to p1, e2 to p2 and 
e3 to p3 is the first guess for the main axes of 
the SNr-STN segmentation s (Image 1). 

 
Image 1 Main axes p1, p2 and p3 of the SNr-

STN  

2.2 Main Axes Correction 
Due to the lens-like shape of the SNr-STN the 
eigenvectors e1 and e2 are not clearly separa-
ble by their eigenvalues v1 and v2 because 
they are not always considerably different. 
Therefore there is a chance that e1 actually 
corresponds to p2 and e2 actually corresponds 
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to p1. To overcome this problem, the assign-
ment of the eigenvectors to the main axes is 
performed using simple rules. These rules are 
based on the premise that all images have 
been matched onto the MNI152 template, 
leading to a common coordinate system and 
therefore to the same SNr-STN rough-
orientation. This rough-orientation is not suf-
ficient for the determination of the main axes 
directly. However, in combination with the 
eigenvectors e1, e2 and e3 this rough-
orientation gives a good lead for a unique 
main axes assignment.  
Furthermore, it is possible that the eigenvec-
tors that are determined by the PCA point into 
the inverted direction. The directions of the 
main axes are corrected after the eigenvectors 
are assigned to the main axes. 

2.2.1 Main Axes Assignment 
The first main axis is per definition the eigen-
vector that is closest to parallel to the vector 
[0, 1, 1] (pointing anterior-superior). If the 
angle between e1 and [0, 1, 1] is greater than 
the angle between e2 and [0, 1, 1], and addi-
tionally   v2r > v1, the principal axis p1 is set to 
e2 and p2 is set to e1. The factor r determines 
the ratio between the eigenvalues v1 and v2 in 
order to allow a swap of p1 with p2. A value of 
1.7 for p has been determined empirically. 
As the eigenvalue v3 of the eigenvector e3 is 
always considerably smaller than the eigen-
values v1 and v2, the direction of e3 is general-
ly used as third main axis p3. 

2.2.2 Main Axes Inversion 
The direction of the first main axes p1 is in-
verted if the angle between p1 and [0, 1, 1] is 
greater than 900.  
As the rough direction of the third main axis 
p3 is different for the left SNr-STN ([1, 0, 1], 
pointing right-superior) and the right SNr-
STN ([-1, 0, 1], pointing left-superior), the 
direction p3 for the left SNr-STN is inverted if 
the angle between p3 and [1, 0, 1] is greater 
than 900 and the direction of p3 for the right 
SNr-STN is inverted if the angle between p3 
and [-1, 0, 1] is greater than 900. 
Lastly, it is checked whether the main axes 
form a left-handed coordinate system (LHCS) 
for the left SNr-STN and a right-handed coor-
dinate system (RHCS) for the right SNr-STN 
respectively. If this is not the case, the direc-
tion of the second main axis p2 is inverted. 
The reason for having two different coordi-
nate systems for the left and right SNr-STN is 

that the right SNr-STN is transformed using a 
reflection so that it can be regarded as left 
SNr-STN and therefore the RHCS of the right 
SNr-STN becomes a LHCS after this reflec-
tion. 

2.2.3 Manual Correction 
The automatic determination of the main axes 
p1, p2 and p3 works well with most of the data. 
However, if the method fails, there is the need 
of a manual correction. As the main axis p3 is 
always determined correctly, the manual cor-
rection is enabled by the rotation of both axes 
p1 and p2 around p3. As the main axes are the 
basis for the further landmark generation, it is 
of crucial importance that the main axes are 
correct before further processing. However, 
the manual correction is non-trivial as it re-
quires a very thorough inspection of the mor-
phology of the SNr-STN. 

2.3 Surface Tessellation 
A tessellated sphere is placed at the centre of 
gravity m for the landmark generation of s 
and then rays are cast from m through each 
vertex of the sphere. The intersection points 
of the surface of s with the rays are regarded 
as landmarks. 

2.3.1 Sphere Generation 
The sphere is created by iteratively subdivid-
ing a unit cube. Therefore the number of gen-
erated landmarks depends on the number of 
iterations. 
In an iteration each rectangular face is subdi-
vided into four rectangular faces (Image 2a). 
With the cube centred at the origin, the verti-
ces are then normalized in order to re-
establish the shape of a sphere (Image 2b-d). 
As the iterative subdivision leads to duplicate 
vertices, these duplicates are removed eventu-
ally. 
In our experiments a single iteration, system-
atically leading to 26 unique vertices, is per-
formed. 
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Image 2 a) Subdivision of a Rectangular 

Face, b) Unit Cube, c) One Iteration and 
d) Two Iterations 

2.3.2 Sphere Transformation 
The vertices of the sphere are then scaled by 
the eigenvalues e1, e2 and e3. Subsequently 
the vertices are aligned by the main axes p1, 
p2 and p3 (Image 3). 
 

 
Image 3 Sphere scaled by eigenvalues and 
aligned by main axes 

2.3.3 Landmark Generation 
A ray is traced from the centre of gravity m 
through each of the 26 vertices. The intersec-
tion points of each ray with the hull of the 
SNr-STN are the landmarks (Image 4). 
 

 
Image 4 Rays and resulting landmarks 

3 Results 
At the time of writing a total of 7 SNr-STN 
segmentations, created by two neurosurgeons 
and two computer scientists specialised in 
medical imaging, are present. 24 of the 28 
segmentation images are suitable for further 
processing. With the right SNr-STN mapped 
to the left SNr-STN this leads to a total of 48 
valid SNr-STN segmentations. 
 

 
Image 5 SNr-STNs represented by land-

marks 
 
Instead of placing a total of 48�26=1248 
landmarks tediously by hand, merely the 48 
SNr-STNs have been segmented manually. 
Then, the landmark generation is performed 



Published: BMT 2012 – 46. DGBMT Jahrestagung, Jena (for internal use) 6 

 
 
 

as described. For 36 out of the 48 segmenta-
tions (75%) the main axes are determined 
correctly. The remaining 12 segmentation 
images have been corrected manually by 
rotating the main axes p1 and p2 around p3, 
which was done within a few minutes.  
The evaluation of the landmarks has been 
done by manual inspection. Image 5 depicts 
the generated landmarks for a subset of the 
available SNr-STN segmentations. 
Subsequently a PDM of the landmarks has 
been created. A manual adoption of the PDM 
parameter p within the range of pmean±2σ 
leads to plausible SNr-STN shapes. As the 
PDM creation is based on the landmarks, the 
generation of plausible shapes is a further 
hint that the landmarks are of good quality. 

4 Conclusion 
With the semi-automatic landmark genera-
tion the first step towards an automatic STN 
segmentation has been reached. 
However, the number of available images 
that have been used for the development and 
evaluation of the landmark generation meth-
od was rather small. Therefore the landmark 
generation will be evaluated with a larger 
patient cohort as soon as new data is availa-
ble. As the landmark generation is only a part 
of an entire segmentation system, the full 
system will be implemented and analysed. 
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