FACHHOCHSCHULE TRIER

Hochschule fiir Technik, Wirtschaft und Gestaltung
University of Applied Sciences

Informatik

Informatik-Bericht Nr. 2010-5

Schriftenreihe Fachbereich Informatik, Fachhochschule Trier



MER FEATURE ANALYSIS AND SELECTION FOR COMPUTER-AIDED
GPE/GPI NAVIGATION

Yannick Thesen and Peter Gemmar

Institute for Innovative Informatics Applications i3A

University of Applied Sciences (FH) Trier
Schneidershof, 54293 Trier, Germany
email: y.thesen@fh-trier.de

ABSTRACT
Using microelectrode recordings (MER) to aid the navi-
gation of stimulation electrodes to the optimal target po-
sition during deep brain stimulation (DBS) surgery in pa-
tients suffering from Parkinson’s disease proved effectiv
in the past and has become common practice. In recent
years, pallidal DBS for severe cases of dystonia with the
internal part of the globus pallidus (GPi) as the preferred
stimulation target has become increasingly popular. How-
ever, recordings from dystonic patients have been found to
be less conclusive in delineating the target structure from
its surroundings.

We studied microelectrode recordings obtained from
19 patients undergoing surgery for pallidal DBS and ob-
served several types of recordings exhibiting distinct fir-
ing characteristics. Various features were extracted and
analyzed in order to find measures that characterize these
signal types. Using statistic analysis and Self-Orgaagizin
Maps (SOMs), those features allowing the best separation
between non-neuronal and neuronal recordings were iden-
tified. The information gained was used to generate a fuzzy
classifier which is capable of differentiating between MERs
of the two classes in most of the cases.
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1 Introduction

Deep brain stimulation (DBS) is a common treatment op-
tion for people suffering from Parkinson’s disease, essen-
tial tremor, dystonia and other neurological disorders, es
pecially in cases where medical treatment is unsuccessful.
DBS is a sophisticated procedure requiring thorough plan-
ning and a high level of accuracy when implanting the elec-
trodes, in order to minimize the risk of damaging critical
structures and blood vessels and to improve chances of a
successful treatment. An essential task in the stereotacti
implant procedure is the navigation of the microelectrodes
to the calculated target coordinates as well as the determi-
nation of the optimal stimulation site and the subsequent
verification of the electrode positions.

A widely-used technique to improve targetting with
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good reported clinical outcome [1, 2, 3, 4, 5] is the intra-
operative analysis of microelectrode recordings (MER).
Neuronal activity is recorded at each depth along the tra-
jectory while advancing the electrode into the brain. The
surgeon can then, based on his knowledge of characteristic
signal properties from different functional areas, confimm
correct the current position of the electrode tip.

To aid the surgeon in placing the electrodes, there
exists an effort to find signal features and analysis meth-
ods that allow a more objective mapping of microelectrode
recordings to functional areas, which could then be used in
an automatic navigation assistant. Apart from improving
clinical outcomes of DBS, such a tool could help make the
procedure safer and less time consuming, thereby reducing
the strain of the operation on patient and surgeon alike.

In the case of Parkinson’s disease, the preferred target
for DBS is the subthalamic nucleus (STN) located in the
basal ganglia. A typical electrode trajectory passes tjtiou
the thalamus and the zona incerta (ZI) into the STN before
entering the substantia nigra (SNr). The signals recorded
from different regions on the electrode’s path show distinc
properties that are well documented [2, 6, 7] and that allow
for a rather straight-forward detection of STN borders.

At our institution, we already developed an automatic
classifier for recordings from thalamic DBS in Parkinson
patients, which is capable of distinguishing between the
STN and the surrounding brain structures, the classifica-
tions being consistent with manual decisions by an experi-
enced surgeon in more than 96% of cases [8].

In recent years, DBS has become a more common
treatment option for patients suffering from dystonia, a
neurological movement disorder in which sustained mus-
cle contractions cause twisting and repetitive movements
or abnormal postures. While medical treatment (mostly
with local injections of Botolinum toxin) is possible and
this form of therapy offers some relief, generalized dysto-
nias are difficult to treat with medication and resistanaes o
side effects are common.

The primary stimulation target for DBS in dystonia
patients is the globus pallidus pars interna (GPi), which is
part of the globus pallidus, a fairly large sub-corticalistr
ture located in the basal ganglia that is divided by the me-
dial medullary lamina into an external and an internal part
(GPe and GPi). Unlike with thalamic or pallidal DBS in



Parkinson’s disease, microelectrode recordings froni-pall
dal DBS for dystonia have proven less conclusive in delin-
eating the target structure from its surroundings becafise o
the apparent similarities of firing patterns in GPi and GPe
and the spontaneous nature of discharges in both nuclei [1,
9, 10, 11, 12, 13]. Electrode placement in dystonic pa-
tients is complicated further by the fact that (1) the GPi
is a relatively large structure and the optimal target loca-
tion is difficult to determine, (2) stimulation effects aretn
immediately visible as is the case with Tremor where intra-
operative test stimulation is applied to verify the eled&o
position and (3) dystonia surgery is typically performee un
der general anesthesia, which may influence the appearance
of microelectrode recordings [14].

Here we present our findings regarding characteris-
tics of microelectrode recordings obtained from 19 dys-
tonia patients undergoing stereotactic surgery for palllid
deep brain stimulation. As a first step to developing a nav-
igation assistant, we investigated means of automatically
identifying MERs of different appearances. Several sig-
nal features were considered to find those most suitable
for classifying recordings into neuronal and non-neuronal
Self-Organizing Maps were used to detect features that are
relevant as well as those that are irrelevant or redundant fo
this task. As a first result, a fuzzy classifier which shows
promising performance is presented and further research
steps are discussed.

2 Material and Methods
2.1 Equipment, Recording Techniques and Patients

The recordings used in our research were obtained dur-
ing surgery for pallidal DBS in 19 patients suffering from
various forms of dystonia treated at the hospital of Idar-
Oberstein, Germany, using microelectrodes, microdrive
and Leadpoirft'from Medtronic Inc, Minneapolis, Min-
nesota, USA. All of the MERs had a length of 10 seconds
with a sample rate of 24 kHz. MERs were recorded every
millimeter along the electrode’s trajectory (every 0.5 mm
in target proximity). All surgeries were performed under
general anesthesia.

2.2 Characteristics of Microelectrode Recordings

As expected, the recordings encountered along the elec-
trode trajectories displayed a broad variety in appearance
and showed no obvious patterns among different patients.
Because of this variability, it was seldom possible to visu-
ally group adjacent recordings in a way that would allow
implications regarding the underlying neuronal structure
Based on observations made by others (e.g. [1, 2, 11]) and
on our own investigations, we identified several recording
types that may help in further characterizing these MERs
(figure 1):

e Non-neuronal Signals show no or little spikes and

mostly low background noise. Artifacts or single de-
tached spikes may occur.

e Detached spikes Spontaneous high voltage dis-
charges that appear in no discernable pattern (neither
tonic nor bursting).

e Slow burstsSignals show bursting spike activity of up
to more than a second. Bursts are separated by pauses
that can have the same length of a second or more.
Intra-burst spike rate is mostly low.

e Detached burstsBursting signal behavior with bursts
of less than 500 ms with mostly high frequency intra-
burst spike rates and low background noise. Pauses
between bursts can be a second or longer.

e Bursting No detached bursts but rather continuous
bursty discharge with short pauses of less than 250 ms
and a tendency towards higher background noise.

e High frequency discharge with burstsSignals are
characterized by very high background activity and
continuous but irregular spiking that can be slightly
bursting.

e Low frequency tonic Regular discharge with rela-
tively large interspike intervals.

e High frequency tonicRegular discharge with smaller
interspike intervals.

In many cases, mixtures between the above MER
types were observed in the form of rapid changes in sig-
nal appearance or overlapping patterns. In these instances
an unambiguous classification might not be possible.

Although it would be desirable to reliably detect each
of the listed MER types using an automatic classifier in or-
der to further characterize MER trajectories encountared i
DBS for dystonia or to develop a navigation assistant, as
a first step, only a distinction between neuronal and non-
neuronal MERs was attempted. We considered a record-
ing to be neuronal if it belonged to any of the classes ex-
ceptnon-neuronal Because of the great variability among
these classes, features were required that adequatelly cove
all possible cases.

2.3 Feature Extraction

A number of features were considered for the classifier,
some of which have been described in the literature and
some of which are novel features. Because of the great
variability of value ranges, mean-variance-normalizat®
applied to the extracted features. Furthermore, a modified
natural logarithm is applied in case of the wavelet actjvity
which exhibits a positively skewed distribution of values.
The features that were extracted are introduced in the fol-
lowing sections.
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Figure 1. MER types: (a) Non-neuronal, (b) detached spikgsjow bursts, (d) detached bursts, (e) bursting, (f) fiigguency
discharge with bursts, (g) tonic, low frequency, (h) tohigh frequency.

2.3.1 Spike-dependent Features

Spike detection is done by thresholding the normalized cu-
mulative energy difference (NCED), a method that is based
on the slope of the cumulative sum of the squared input sig-
nal [15]. It requires no patient- or signal-specific thrddso
and detects spikes of varying amplitudes with minimum
configuration. For a MER; of length N, the normalized
cumulative energy (NCEF(¢) and its derivative (NCED)
E'(t) can be calculated as follows:
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The normalized cumulative energy difference is then
thresholded using a fixed valug. A high value of E’(t)
indicates a spike in the input MER.

E(t) =

MSpikes = {t‘E/(t) > Ts}

The waveform of a single action potential usually stretches
across several neighbouring samples. Because this will
most likely cause multiple spikes to be detected, adjacent
spikes which fall into a certain window are merged, keep-
ing the spike with the highest absolute amplitude.

We considered the following measures based on the
detected spikes and interspike intervals (ISI):

. Spike rate (SRNumber of spikes per second.

. Burst Index (BI) Ratio of the number of interspike

intervals shorter thamg to the number of interspike
intervals longer thamg.

. Pause Index (Pl)Ratio of the number of interspike

intervals longer thamp to the number of interspike
intervals shorter thanp.

. Pause Ratio (PR)Ratio of the time spent in pauses

(interspike intervals longer thaty) to the time out-
side of pauses (interspike intervals shorter thaj

. Tonicity (TS) The tonicity score attempts to measure

signal regularity. It is based on the idea, that in a sig-
nal with regular spiking, the corresponding interspike
intervals will be similar to each other. The tonicity
score is defined as the relationship between ISl stan-
dard deviation and ISI mean:

_ 0IsI
IST

A low tonicity score indicates a tonic signal while a
high value indicates irregular firing [10].

. Sub Spike Rate (subSR) / Sub Activity (subAbe

sub spike rate is defined as the mean number of spikes
in the most active parts of a signal (those intervals that
contain the most spikes). Its main intention is to mea-
sure sporadic neuronal activity appearing only in some
disjoint regions of the complete signal, although it will



also exhibit high values for continuously firing neu-
rons.

For the feature calculation the MER is split into
equally sized sub signals that may be overlapping. For
each of the sub signals, the number of spikes it con-
tains is determined. The sub activity is defined as the
mean of the highest spike rates of intervals that are a
certain number of samples apart. By making sure that
the sub signals used in the calculation are not too close
to each other, it is guaranteed that the sub signals don’t
all belong to the same (short) burst, as one burst might
not be enough of an indicator that the complete signal
should be classified as neuronal.

The sub activity feature is similar to the sub spike rate

in that it calculates the mean spike rates of a number of
sub signals of the complete MER. However, the vari-

ance of signal intervals is used to find the most active
sub signals.

. Burst Ratio The burst ratio (BR) is defined as the time
spent in bursts divided by the signal length. Bursts
are detected using a modified NCED method based on
the interspike intervals. A burst in the input signal is
represented by a flat slope in the derivative of the nor-
malized cumulative sum of the interspike intervals. If
several values in this derivative fall below a threshold,
the spikes corresponding to the involved ISIs are noted
to be forming a burst.

2.3.2 Spike-independent Features

1. Activity. The activity (ACT) feature measures the

MER'’s background activity, based on percentiles and
standard deviation. By using thresholds that are calcu-
lated from the data collected in the current recording
session and not just from each individual signal, the
activity feature is patient-specific and the recordings
are analyzed in the context of the complete trajectory
or multiple trajectories [8]. The feature extraction ba-

sically consists of two steps.

(a) Threshold calculation: Two thresholds are calcu-
lated,t, being a threshold derived from the signal per-
centilesP,, and¢, a threshold derived from the stan-
dard deviations. All the recordings. . . s;; being an-
alyzed are included in the threshold calculation.

ty = Po(Ps(abs(s1)), ..., Ps(abs(sar)))
te = Py(01,02,...,0M)
With 0 < a, B, < 100.

(b) Feature calculation: Each recording is divided into
I, subsignals.s; ;, being thek-th interval in thei-th
signal andr; 5, being the standard deviation gf;;, the
actual feature valudC'T; for each signak; is calcu-
lated as follows:

I

ACT, =" ((Py (abs(six)) — tg) + (054 — to)
k=1

2. Wavelet Activity The wavelet activity (WVA) is based
on the signal’'s variance. In order to analyze the
signals with the least noise possible, the recordings
are denoised using wavelet transformations (denoising
by soft-thresholding) and subsequently decomposed.
The produced wavelet-coefficients are split ifdan-
tervals. The wavelet activity is defined as a percentile
P;s of variances of the wavelet coefficients in these
intervals:

WV A = Ps (Var(abs(wy)), ..., Var(abs(wg,)))
with 0 < § <100 [8].

3. Cumulative Sum Coefficienthe cumulative sum co-
efficient (CSC) attempts to measure the ratio of neu-
ronal discharge and background noise. First the signal
is sorted backwards. For the rest of the calculation,
only the firstF" samples are kept and the normalized
cumulative sumz; of the cropped signaf is com-
puted:

i

> T
* j:1
R O

Sorting backwards and cropping the signal causes
negative samples to be disregarded. The cumulative
sum coefficient is defined as the position of the sample
where the normalized cumulative surhfirst exceeds
a thresholdrcsc € [0,1]. The resulting value is then
divided by F, yielding a feature value between 0 and
1.
min ({i|z} > 7csc})

F
A low CSC value indicates a high spike-to-
background amplitude ratio and suggests that the sig-
nal in question may be neuronal, a value close to one
on the other hand indicates either low activity or very
high firing rate and background noise.

CSC =

4. Amplitude ratio (amplRatio) Ratio of spike ampli-
tudes and amplitudes of non-spike samples.

5. Additional features Zero-Crossings, Curve Length,
Peaks, Average Nonlinear Energy (NLE) [16].

2.4 Feature Selection

An initial look at the distribution of feature values gives
some hints as to which features may have some relevance
and which will most likely be of no use whatsoever. Fig-
ure 2 shows means and standard deviation for a subset of
the calculated features. Some features, such as the num-
ber of zero crossingzCros$, the burst indexBl) and the
number of peakspeak$, are obviously unfit for class sep-
aration. Spike rateSR, pause indexKl) and pause ratio
(PR) on the other hand appear to be quite well-suited for
differentiating between neuronal and non-neuronal. While
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Figure 2. Feature distributions.

they are definitely valid indicators in the case of very typ-
ical signals, they fail to produce conclusive values, if the
analyzed signals are not ideal examples of neuronal and
non-neuronal recordings.

In the following we consider geometric mapping of
features in the space of class representatives insteaasof cl
sical (e.g. statistical) methods for feature selection.

2.4.1 Self-Organizing Maps (SOM)

Self-Organizing Maps (SOMs) are artificial neuronal net-
works based on unsupervised learning. A SOM consists
of neurons representing weight vectors (prototype vegtors
codebook vectors) organized on a regular low-dimensional
grid. A SOM can be thought of as a net which is ad-
justed to the properties of the data cloud (the training
data). In the trained map, neighboring neurons receive
similar weight vectors that may form clusters which corre-
spond to clusters in the input data. The training procedure
roughly works as follows: Thd-dimensional weight vec-
torsv, = (viv?. ..vf)t of the map’s neurons are initial-
ized with random values. During the training process, in-
put vectorsr; = (x}zf . .x?)t are randomly drawn from
the training data set and the neuron whose weight vector is
closest to the input vector, the best-matching unit (BMU),
is determined:

l[2; = vpmoll = min((lz; —vil])

Once the best-matching unit has been identified, the under-
lying weight vectorvg sy as well as the weight vectors of
the neighboring neurons are drawn closer to the input vec-
tor z;, according to a given learning rate and neighborhood
kernel. lteratively presenting training vectors to the SOM
causes the map to gradually adjust to the training data [17].
After training the SOM with selected input features,
the map is visualized with different information superim-
posed. (1) ThéJ-matrix (figure 3, top left) visualizes dis-
tances between neighboring map units. High values in the
U-matrix indicate a cluster border whereas low values are
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Figure 3. SOM trained with three selected features. Left:
U-matrix and component planes, right: Hit/color plane
with neuronal cluster (top) and non-neuronal cluster (bot-
tom).

characteristic for the clusters themselves. K&) planes
(figure 3, right) show the distribution of best-matching
units (the neuron whose weight vector is closest to an in-
put vector) when presenting training or testing data to the
trained map. The hits are shown as pie charts drawn on top
of the neurons with the manual classification shown as pie
colors and the size of the pie chart indicating how many
data samples hit a certain neuron. (mponent planes
(figure 3, center) color code the values of each neuron’s
weight vector for a single feature. When looking at clus-
ters on hit planes, component planes show which feature
values are characteristic for a certain cluster and whiah fe
tures are redundant or irrelevant. @plor planes(figure

3, right) show the SOM in colors that represent the simi-
larity between neighboring neurons according to a certain
distance measure. Uniformly colored areas indicate that
the underlying prototype vectors are similar. In combina-
tion with a hit plane, one can see whether the formed hit
clusters are well-separated.

After subsequently narrowing down the features used
to train the SOM, wavelet activity, sub spike rate and cumu-
lative sum coefficient emerged as the most effective mea-
sures for distinguishing non-neuronal and neuronal record
ings. As the color plane on the right of figure 3 shows, a
neuronal cluster has formed at the top and a non-neuronal
cluster at the bottom. The U-matrix shown in the top left
indicates a fairly large diversity of weight vectors in the
neuronal cluster and a more uniform distribution in the
non-neuronal cluster. Together with the component planes,
the two signal groups can be further characterized. Non-
neuronal MERs generally have low values for wavelet ac-
tivity and sub spike rate and a high cumulative sum coeffi-



cient. The neuronal cluster can be split into two sub clus-
ters. They both share a medium or high wavelet activity
and either a very low cumulative sum coefficient (top left
part of map) or a high cumulative sum coefficient but a high
sub spike rate (top right part of map).

2.5 Fuzzy Classifier

Using the three features that proved to be especially
well-suited for differentiating neuronal and non-neurona
recordings in the SOM analysis, we constructed a Takagi-
Sugeno type fuzzy classifier. While an automatic cre-
ation of a fuzzy system and the used membership functions
using subtractive clustering and subsequent linear least
squares optimization (as provided by Mafl¥function
genfi s2) for these three features yielded fair results, the
resulting systems tended to deliver unstable output when
presented with testing data that differed much from the
training data or when classifying recordings with uncom-
mon feature combinations (i.e. outliers). This may be a
consequence of the constraints of automatic fuzzy system
generation, such as (1) the usage of Gaussian input mem-
bership functions that are unable to adequately cover ex-
treme feature values, (2) linear combination of inputs that
may cause undesirable output if unexpected feature values
(e.g. extremes) are presented to the system, (3) genera-
tion of one rule for every cluster found in the training data,
which renders the resulting system inflexible, (4) usage of
all features in all rules although certain clusters are char
acterized more easily using only a subset of the features
and (5) the inability of incorporating expert knowledge ob-
tained from previous research.

The fuzzy classifier was therefore adapted to use
asymmetrical Gaussian curves as input membership func-
tions where extremes need to be incorporated and constant
output functions that are insensitive to unexpected input
feature combinations. The rules used in the classifier are
shown in table 1. The first three columns contain the input
feature ranges that cause a rule to fire (rule antecedents,
and-connected) while the fourth column shows the corre-
sponding consequentseurbeing constant andnonbeing
constan®. A high wavelet activity value will for example
cause the second rule to fire, shifting the overall output of
the system towardseur. The linguistic terms used on the
antecedent side correspond to input membership functions
that are laid out according to information gained from per-
forming subtractive clustering on the training data.

The adapted system is then trained using a combina-
tion of the least-squares method and the backpropagation
gradient descent method (Matf&functionanf i s) in or-
der to fine-tune the system’s membership function parame-
ters.

2.6 Results

Of initially 16 features, the most promising three were se-
lected and a fuzzy classifier was automatically generated.

WVA SubSR CSsC Output

low neur

high neur
medium to high| high | medium to high|| neur
low low high non

Table 1. Adapted fuzzy ruleseur = 1, non = 0.

+ non-neuronal
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Figure 4. Approximate discriminant function of the classi-
fier.

The system was then presented with testing dat691,
Nnon =365, Nyeur=326), Which it successfully divided into
the expected classes as can be seen in figure 4.

3 Conclusion

In this study, we examined microelectrode recordings from
pallidal DBS in dystonia which proved to be very diverse
as has already been reported by others. We grouped the
recordings into types and extracted several features which
were then narrowed down to those that best differentiate
neuronal from non-neuronal recordings. Using informa-
tion obtained from SOM analysis, a fuzzy classifier was
constructed that allows for a good automatic distinction be
tween the two classes. The performance of the classifier in-
dicates that the chosen features are well suited for the clas
sification task. However, the classifier fails in some cases,
mostly when presented with outliers exhibiting uncommon
feature combinations. Although these cases can possibly
be detected using additional features, we intend to keep the
system dimension as low as possible, favoring a determin-
istic system.

In future investigations, several aspects could be of in-
terest. A simplification of the used set of rules, e.g. by com-
bining the three rules foneuronalcould further improve
classifier performance. For pathological cases in which the
classifier fails, it needs to be determined why that is and
how the system can be adapted to deal with these cases ad-



equately. It might be the extracted features that fail, Whic
would suggest the need for improvement of some of the

used measures, or there may be other reasons for the mis-

classification, such as artefacts (visible and invisible) o
clipping of the analyzed microelectrode recordings. Fur-
thermore, the sudden variations of signal types encouhtere

along many of the trajectories used in this study suggest

that the chosen distance @b — 1.0 mm between record-
ings needs to be decreased so structure borders are easier to
detect, as this can be an essential indicator for identifyin
the stimulation target.
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