
F

Informatik-Bericht Nr. 2010-3

Schriftenreihe Fachbereich Informatik, Fachhochschule Trier

Hardness and Approximability in Multi-Objective Optimization

Christian Glaßer
∗

Christian Reitwießner
†

Heinz Schmitz
‡

Maximilian Witek
§

March 4, 2010

Abstract

We systematically study the hardness and the approximability of combinatorial multi-
objective NP optimization problems (multi-objective problems, for short).

We define solution notions that precisely capture the typical algorithmic tasks in multi-
objective optimization. These notions inherit polynomial-time Turing reducibility from mul-
tivalued functions, which allows us to compare the solution notions and to define correspond-
ing NP-hardness notions. For both we prove reducibility and separation results.

Furthermore, we define approximative solution notions and investigate in which cases
polynomial-time solvability translates from one to another notion. For problems where all
objectives have to be minimized, approximability results translate from single-objective to
multi-objective optimization such that the relative error degrades only by a constant factor.
Such translations are not possible for problems where all objectives have to be maximized,
unless P = NP.

As a consequence we see that in contrast to single-objective problems, where the solution
notions coincide, the situation is more subtle for multiple objectives. So it is important to
exactly specify the NP-hardness notion when discussing the complexity of multi-objective
problems.

1 Introduction

Many technical, economical, natural- and socio-scientific processes contain multiple optimiza-
tion objectives in a natural way. For instance, in logistics one is interested in routings that
simultaneously minimize transportation costs and transportation time. For typical instances
there does not exist a single solution that is optimal for both objectives, since they are conflict-
ing. Instead one will encounter trade-offs between both objectives, i. e., some routings will be
cheap, others will be fast. The Pareto set captures the notion of optimality in this setting. It
consists of all solutions that are optimal in the sense that there is no solution that is strictly
better. For decision makers the Pareto set is very useful as it reveals all trade-offs between all
optimal solutions for the current instance.

In practice, multi-objective problems are often solved by turning the problem into a single-
objective problem first and then solving that problem. This approach has the benefit that one
can build on known techniques for single-objective problems. However, it comes along with
the disadvantage that the translation of the problem significantly changes its nature such that
sometimes the problem becomes harder to solve and sometimes certain optimal solutions are
not found anymore. In general, single-objective problems cannot adequately represent multi-
objective problems, so optimization of multi-objective problems is studied on its own. The

∗Julius-Maximilians-Universität Würzburg, Germany. glasser@informatik.uni-wuerzburg.de
†Julius-Maximilians-Universität Würzburg, Germany. reitwiessner@informatik.uni-wuerzburg.de
‡Fachhochschule Trier, Germany. schmitz@informatik.fh-trier.de
§Julius-Maximilians-Universität Würzburg, Germany. witek@informatik.uni-wuerzburg.de

1

research area of multi-objective combinatorial optimization has its origins in the late 1980s and
has become increasingly active since that time [EG02]. For a general introduction we refer to
the survey by Ehrgott and Gandibleux [EG00] and the textbook by Ehrgott [Ehr05].

Typically, the exact solution of a multi-objective problem is not easier than the exact solution
of an underlying single-objective problem. Therefore, polynomial-time approximation with
performance guarantee is a reasonable approach also to multi-objective problems. In this regard,
Papadimitriou and Yannakakis [PY00] show an important result: Every Pareto set has a (1+ε)-
approximation of size polynomial in the size of the instance and 1/ε. Hence, even though
a Pareto set might be an exponentially large object, there always exists a polynomial-sized
approximative set. This clears the way for a general investigation of the approximability of
Pareto sets. However, complexity issues raised by multi-objective problems have not been
addressed systematically yet [PY00]. We consider our paper as a first step to a systematic
investigation of hardness and approximability of multi-objective problems. Our contribution is
as follows:

Solution Notions (Section 3): We define several notions that capture reasonable algorithmic
tasks for computing optimal solutions of multi-objective problems. On the technical side, we see
that these notions can be uniformly and precisely described by refinements of total, multivalued
functions. This yields the suitable concept of polynomial-time Turing reducibility for solution
notions. It turns out that the relationships shown in Figure 1 hold for arbitrary multi-objective
problems.

NP-Hardness Notions (Section 4): Solution notions for multi-objective problems induce
corresponding NP-hardness notions for these problems. In Table 1 we provide examples of multi-
objective problems that are hard with respect to some notion, but polynomial-time solvable
with respect to some other notion. So in contrast to the single-objective case where all notions
coincide, we see a more subtle picture in case of multiple objectives: our separation results
show that NP-hardness notions in fact differ, unless P = NP. As a consequence, we suggest to
exactly specify the solution notion when discussing the complexity of multi-objective problems
and when comparing problems in these terms.

Approximation Notions (Section 5): We also define and investigate various approximative
solution notions for multi-objective problems. As a summary, Figure 2 shows for arbitrary
multi-objective problems in which cases polynomial-time solvability of one such notion im-
plies polynomial-time solvability of another notion, and what quality of approximation can
be preserved at least. Moreover, we reveal a significant dichotomy between approximation of
minimization and maximization problems in this context. For problems where all objectives
have to be minimized, approximability results translate from single-objective to multi-objective
optimization such that the relative error degrades only by a constant factor (the number of
objectives). With this general result we provide a procedure how to translate (already known)
single-objective approximation results to the multi-objective case. Applications to some exam-
ple problems are stated in Table 2. In contrast to this result we prove that such translations
are not possible for problems where all objectives have to be maximized, unless P = NP.

2 Preliminaries

Let k ≥ 1. A combinatorial k-objective NP optimization problem (k-objective problem, for short)
is a tuple (S, f,←) where

• S : N → 2N maps an instance x ∈ N to the set of feasible solutions for this instance,
denoted as Sx ⊆ N. There must be some polynomial p such that for every x ∈ N and
every s ∈ Sx it holds that |s| ≤ p(|x|) and the set {(x, s) | x ∈ N, s ∈ Sx} must be

2

polynomial-time decidable.

• f : {(x, s) | x ∈ N, s ∈ Sx} → Nk maps an instance x ∈ N and a solution s ∈ Sx to its
value, denoted by fx(s) ∈ Nk. f must be polynomial-time computable.

• ← ⊆ Nk×Nk is the partial order relation specifying the direction of optimization. It must
hold that (a1, . . . , ak) ← (b1, . . . , bk) ⇐⇒ a1 ←1 b1 ∧ · · ·∧ ak ←k bk, where ←i is ≤ if the
i-th objective is minimized, and ←i is ≥ if the i-th objective is maximized.

For instances and solutions we relax the restriction to integers and allow other objects (e. g.,
graphs) where a suitable encoding is assumed, possibly setting Sx = ∅ if x is not a valid code.
We write ≤ and ≥ also for their multidimensional variants, i. e., ≤ is used as the partial order
← where ←i = ≤ for all i.

Our notation allows concise definitions of multi-objective problems. We exemplify this
by defining two well-known problems on labeled graphs. An Nk-node-labeled (resp., Nk-edge-
labeled) graph is a triple G = (V,E, l) such that (V,E) is a graph and l : V → Nk (resp.,
l : E → Nk) is a total function.

Definition 2.1 (k-Objective Minimum Matching).

k-MM = (S, f,≤) where instances are Nk-edge-labeled graphs G = (V,E, l),
SG = {M | M ⊆ E is a perfect matching on G}, and fG(M) =

�
e∈M

l(e).

Definition 2.2 (2-Objective Minimum Traveling Salesman).

2-TSP = (S, f,≤) where instances are N2-edge-labeled graphs G = (V,E, l),
SG = {H | H ⊆ E is a Hamiltonian circuit in G}, and fG(H) =

�
e∈H

l(e).

The superscript x of f and S can be omitted if it is clear from context. The projection of fx

to the i-th component is denoted as fx

i
where fx

i
(s) = vi if fx(s) = (v1, . . . , vk). Furthermore,

the order relation ← obtained from ←1, . . . ,←k is also written as (←1, . . . ,←k). If a ← b we
say that a weakly dominates b (i. e., a is at least as good as b). If a ← b and a �= b we say that
a dominates b. Note that ← always points in the direction of the better value. If f and x are
clear from the context, then we extend ← to combinations of values and solutions. So we can
talk about weak dominance between solutions, and we write s ← t if fx(s) ← fx(t), s ← c if
fx(s) ← c, and so on, where s, t ∈ Sx and c ∈ Nk. Furthermore, we define opt← : 2Nk

→ 2Nk ,
opt←(M) = {y ∈ M | ∀z ∈ M [z ← y ⇒ z = y]} as a function that maps sets of values
to sets of optimal values. The operator opt← is also applied to sets of solutions S� ⊆ Sx as
opt←(S�) = {s ∈ S� | fx(s) ∈ opt←(fx(S�))}. If even ← is clear from the context, we write
Sx

opt = opt←(Sx) and opti(S�) = {s ∈ S� | fx

i
(s) ∈ opt←i

(fx

i
(S�))}.

For approximations we need to relax the notion of dominance by a factor of α. For any real
a ≥ 1 define u

a

≤ v ⇐⇒ u ≤ a · v and u
a

≥ v ⇐⇒ a · u ≥ v. Fix some ← = (←1, . . . ,←k)
where ←i ∈ {≤,≥}, let p = (p1, . . . , pk), q = (q1, . . . , qk) ∈ Nk, and let α = (a1, . . . , ak) ∈ Rk

where a1, . . . , ak ≥ 1. We say that p weakly α-dominates q, p
α
← q for short, if pi

ai

←i qi for
1 ≤ i ≤ k. For all p, q, r ∈ Nk it holds that p

α
← p, and p

α
← q

β
← r =⇒ p

α·β
← r, where α ·β is the

component-wise multiplication. Again we extend α
← to combinations of values and solutions, if

f and x are clear from the context.
Let A and B be sets. F is a multivalued function from A to B, if F ⊆ A × B. The set of

values of x is set-F(x) = {y | (x, y) ∈ F}. F is called total, if for all x, set-F(x) �= ∅.

3

In order to compare solution notions of optimization problems we need an appropriate
reducibility notion. All solution notions F considered in this paper have in common that each
instance x specifies a non-empty set of suitable outputs

set-F(x) = {y | y solves x in terms of solution notion F}.

In this sense, a solution notion F is a total multivalued function that maps an instance x to all
y ∈ set-F(x). Therefore, solution notions can be compared by means of a reducibility for total
multivalued functions. We use Selman’s [Sel94] definition of polynomial-time Turing reducibility
for multivalued functions, restricted to total multivalued functions. First, let us specify how a
Turing transducer [BLS84] uses a total function f as oracle: If the transducer writes a query q
to the query tape and changes into the query state, then at the next step, the machine is in the
answer state, the query tape is empty, and the content of the answer tape is f(q), where the
head is on the left-most symbol of f(q). A total function f is a refinement of a total multivalued
function F , if for all x, f(x) ∈ set-F(x). A total multivalued function F is polynomial-time
Turing reducible to a total multivalued function G, F ≤

p
T G, if there exists a deterministic,

polynomial-time-bounded oracle Turing transducer M such that for every refinement g of G it
holds that M with g as oracle computes a total function that is a refinement of F . Note that
the oracle model ensures that ≤p

T is transitive, even if the lengths of the elements in set-F(x)
are not polynomially bounded in |x|.

The decision problem of a set A can be considered as computing the characteristic function
χA, which in turn is a total (multivalued) function. In this way, the polynomial-time Turing
reducibility defined above can also be applied to decision problems.

A solution notion F is called polynomial-time solvable, if there is a total, polynomial-time
computable function f such that f is a refinement of F . A solution notion F is called NP-hard,
if all problems in NP are polynomial-time Turing-reducible to F .

3 Multi-Objective Solution Notions

For a k-objective problem O = (S, f,←) we discuss several reasonable concepts of “solving O”.
We investigate their relationships and conclude this section with a taxonomy of these concepts.

Apparently a dominated solution s is not optimal for O, since solutions exist that are at
least as good as s in all objectives and better than s in at least one objective. So we are only
interested in non-dominated solutions, which are called (Pareto-)optimal solutions. Note that
the set Sx

opt of non-dominated solutions may contain several solutions with identical values.
Since these solutions cannot be distinguished, it suffices to find one solution for each optimal
value, as it is usual in single-objective optimization. This motivates the following definition.

E-O Every-optimum notion
Compute a set of optimal solutions that generate all optimal values.
Input: instance x
Output: some S� ⊆ Sx

opt such that fx(S�) = fx(Sx
opt)

Although E-O formalizes the canonical notion of solving multi-objective problems, this is
far too ambitious in many cases, since every set S� can be of exponential size. We call O
polynomially bounded if there is some polynomial p such that #fx(Sx

opt) ≤ p(|x|) for all x. If
O is not polynomially bounded, then E-O is not polynomial-time solvable. The earlier defined
problems 2-MM and 2-TSP are examples that show this effect. So E-O is infeasible in general,
and hence more restricted concepts of solving multi-objective problems are needed. This brings
us to the following specifications for O.

4

A-O Arbitrary-optimum notion
Compute an arbitrary optimal solution.
Input: instance x
Output: some s ∈ Sx

opt or report that Sx = ∅

S-O Specific-optimum notion
Compute an optimal solution that weakly dominates a given cost vector.
Input: instance x, cost vector c ∈ Nk

Output: some s ∈ Sx
opt with fx(s) ← c or report that there is no such s

D-O Dominating-solution notion
Compute a solution that weakly dominates a given cost vector.
Input: instance x, cost vector c ∈ Nk

Output: some s ∈ Sx with fx(s) ← c or report that there is no such s

If no additional information is available (including no further criteria, no prior knowledge,
and no experience by decision makers), then it is not plausible to distinguish non-dominated
solutions. In these cases it suffices to consider A-O, since all elements in Sx

opt are “equally
optimal”. The notion S-O additionally allows us to specify the minimal quality c that an
optimal solution s must have. With D-O we relax the constraint that s must be optimal.

There exist several well-established approaches that turn O into a single-objective problem
first and then treat it with methods known from single-objective optimization. The following
definitions are motivated by such methods. Later we will show that these approaches differ with
respect to their computational complexity (cf. Figure 1 and Table 1). Note that we consider
W-O only for multi-objective problems where either all objectives have to be minimized or all
have to be maximized (for other problems it is not clear whether the weighted sum should be
minimized or maximized).

W-O Weighted-sum notion (only if all objectives are minimized or all are maximized)
Single-objective problem that weights the objectives in a given way.
Input: instance x, weight vector ω ∈ Nk

Output: some s ∈ Sx that optimizes
�

k

i=1 ωifx

i
(s) or report that Sx = ∅

Ci-O Constraint notion for the i-th objective
Single-objective problem that optimizes the i-th objective while respecting constraints on
the remaining objectives.
Input: instance x, constraints b1, . . . , bi−1, bi+1, . . . , bk ∈ N
Output: for Sx

con = {s ∈ Sx | fx

j
(s) ←j bj for all j �= i} return some s ∈ opti(Sx

con) or
report that Sx

con = ∅

L-O Lexicographical notion for a fixed order of objectives
Single-objective problem with a fixed order of objectives (here 1, 2, . . . , k).
Input: instance x
Output: some s ∈ optk(. . . (opt2(opt1(Sx))) . . .) or report that Sx = ∅

Strictly speaking, W-O, Ci-O, and L-O are not only solution notions for O, but in fact they
are single-objective problems. In the literature, L-O is also known as hierarchical optimization.

5

Moreover, W-O is a particular normalization approach, since a norm is used to aggregate several
cost functions into one. We will get back to general normalized approaches in section 5.3.

Proposition 3.1. Let O be a k-objective problem. If E-O is polynomial-time solvable, then
A-O, S-O, D-O, W-O, L-O, C1-O, . . . ,Ck-O are polynomial-time solvable.

Moreover, if O is a single-objective problem, then all notions defined so far are polynomial-
time Turing equivalent.

E-O plays a special role among the solution notions for O, since solutions of E-O are typically
of exponential size. So in general, E-O is not polynomial-time Turing reducible to any of the
other notions. On the other hand, polynomial-time Turing reductions to E-O are problematic as
well, since answers to oracle queries can be exponentially large which makes the reduction very
sensitive to encoding issues (as the reduction machine can only read the left-most polynomial-
size part of the answer). Therefore, we will not compare E-O with the other notions by means of
polynomial-time Turing reductions, and we will not consider the NP-hardness of E-O. However,
in some sense E-O is covered by D-O (resp., S-O), since the latter can be considered as some
special polynomial-time oracle access to E-O, i. e., D-O (resp., S-O) can be used in a binary
search manner to find solutions for arbitrary optimal values. In Section 5, E-O will become
important again in the context of approximate solutions.

Next we show that the remaining notions are closely related (see Figure 1 for a summary).
SAT denotes the NP-complete set of all satisfiable Boolean formulas.

Theorem 3.2. Let O = (S, f,←) be some k-objective problem.

1. A-O ≤
p
T L-O ≤

p
T S-O

2. S-O ≡
p
T D-O ≡

p
T C1-O ≡

p
T C2-O ≡

p
T . . . ≡p

T Ck-O

3. D-O ≤
p
T SAT

4. L-O ≤
p
T W-O and W-O ≤

p
T SAT if all objectives have to be minimized (resp., maximized)

Proof. 1. Any solution of L-O is an optimal solution and thus solves A-O. To solve L-O we
use S-O to perform a binary search that respects the priority of objectives given in L-O
(i. e., we first optimize the objectives with the higher priority and proceed by optimizing
the lower prioritized objectives, while forcing the optimal values for objectives with higher
priority).

2. First observe that D-O ≡
p
T S-O, since a solution to S-O is also a solution to D-O, whereas

a binary search on D-O also solves S-O. Now, suppose we want to solve Ci-O. A binary
search over objective i that keeps the other objectives fixed to their constrained values
shows Ci-O ≤

p
T D-O. On the other hand, optimizing objective i with constraints bj = cj

for all j �= i where c = (c1, . . . , ck) is the input cost vector for D-O shows D-O ≤
p
T Ci-O.

3. By the definition of k-objective problems, the set

BO = {(x, s�, c) ∈ N× N× Nk
| ∃s ∈ Sx[s ← c and s has prefix s�]}

is contained in NP. A single query to BO with the empty prefix checks whether there is a
solution s ∈ Sx with s ← c, which, in turn, can then be obtained by a binary search that
sequentially sets every bit of s by querying BO. This shows D-O ≤

p
T BO and together

with BO ≤
p
T SAT we get D-O ≤

p
T SAT.

6

4. Since f is polynomial-time computable, there is some polynomial p such that |fx

i
(s)| ≤

p(|x|), hence fx

i
(s) ≤ 2p(|x|) for all x, i and s ∈ Sx. Given some instance x and a fixed

order of objectives we use the weight (2p(|x|))k−1 for the objective with the highest priority,
(2p(|x|))k−2 for the objective with the second highest priority and so on. This shows
L-O ≤

p
T W-O.

To show W-O ≤
p
T SAT, observe that W-O is equivalent to the single-objective problem

O� = (S, f �,←1), where f � is the weighted sum over all objectives of O, hence W-O ≤
p
T

A-O�. But we already know A-O�
≤

p
T D-O� and D-O�

≤
p
T SAT, hence we get W-O ≤

p
T

SAT.

SAT

W-O S-O ≡
p
T D-O ≡

p
T C1-O ≡

p
T C2-O ≡

p
T . . . ≡p

T Ck-O

L-O

A-O

Figure 1: Polynomial-time turing reducibility among different solution notions for any multi-objective
problem O. Corresponding separations are shown in Section 4. Note that W-O is only defined if all
objectives are minimized or all are maximized.

We will see that Theorem 3.2 is complete in the sense that no further reductions among
the solution notions are possible in general and the complexity of different notions can be
separated, unless P = NP (cf. Corollary 4.11). Therefore, even if multi-objective problems are
not polynomially bounded it is worthwhile to classify them according to the taxonomy given in
Figure 1.

Further research: Each solution notion for a multi-objective problem O gives rise to a
total multivalued function (see Section 2). To obtain more detailed insights in the complexity
of different solution notions one may draw connections to classical complexity theory of partial
multivalued functions, starting with the seminal work of Selman [Sel94]. We expect to see a rich
structure of multivalued function classes that are defined on basis of different solution notions.
At this point, more research is needed.

4 Multi-Objective NP-Hardness

Each solution notion for a multi-objective problem induces a corresponding NP-hardness notion.
In this section we study the relationships between these NP-hardness notions and present sepa-
ration results which imply the strictness of the reductions shown in Theorem 3.2 and Figure 1.

From Theorem 3.2 we obtain the following relationships between NP-hardness notions.

Theorem 4.1. Let O = (S, f,←) be some k-objective problem.

1. A-O NP-hard =⇒ L-O NP-hard =⇒ S-O NP-hard and W-O NP-hard

2. S-O NP-hard ⇐⇒ D-O NP-hard ⇐⇒ Ci-O NP-hard

7

We show that no further implications hold between the NP-hardness of the solution notions,
unless P = NP. Such differences concerning the NP-hardness are not unusual. Below we give
several examples of natural problems that are NP-hard with respect to one notion and that
are polynomial-time solvable with respect to another one. This shows the importance of an
exact specification of the NP-hardness notion that is used when discussing the complexity of
multi-objective problems.

The following problem is one of the most studied 2-objective scheduling problems in the
literature [LV93].

Definition 4.2 (Minimimum Lateness and Weighted Flowtime Scheduling).

2-LWF = (S, f,≤) where instances are triples (P,D, W) such that:

• P = (p1, . . . , pn) ∈ Nn are processing times

• D = (d1, . . . , dn) ∈ Nn are due dates

• W = (w1, . . . , wn) ∈ Nn are weights

• S(P,D,W) = {π | π is a permutation representing the schedule pπ(1), . . ., pπ(n)}

• f (P,D,W)(π) = (Lmax,
�

n

j=1 wjCj) where

– The completion time of job j is Cj =
�

i:π(i)≤π(j) pi.
– The maximum lateness is Lmax = max{Cj − dj | 1 ≤ j ≤ n}.
– The weighted flowtime is

�
n

j=1 wjCj.

2-LF = 2-LWF where all weights are 1, i. e., W = (1, . . . , 1).

Besides scheduling problems we use multi-objective problems that aim at diophantine equa-
tions, shortest paths, and minimum spanning trees.

Definition 4.3 (Minimum Quadratic Diophantine Equations).

2-QDE = (S, f,≤) where instances are triples (a, b, c) ∈ N3,
S(a,b,c) = {(x, y) ∈ N2 | ax2 + by2 − c ≥ 0}, and f (a,b,c)(x, y) = (x2, y2).

Definition 4.4 (2-Objective Shortest Path).

2-SP = (S, f,≤) where instances are N2-edge-labeled graphs G = (V,E, l) and two
distinct vertices s, t ∈ V , S(G,s,t) = {P | P ⊆ E is a path that connects s and t in
G}, and f (G,s,t)(P) =

�
e∈P

l(e).

Definition 4.5 (2-Objective Minimum Spanning Tree).

2-MST = (S, f,≤) where instances are N2-edge-labeled graphs G = (V,E, l),
SG = {T | T ⊆ E is a spanning tree of G}, and fG(T) =

�
e∈T

l(e).

The following propositions clarify the complexity of all solution notions for 2-MM, 2-SP,
2-MST, 2-QDE, 2-LWF, and 2-TSP. The results are summarized in Table 1.

Proposition 4.6. Let O ∈ {2-MM, 2-SP, 2-MST}.

8

1. W-O is polynomial-time solvable.

2. C1-O is NP-hard.

Proof. Consider O = 2-MM.

1. W-O is the single-objective problem that on input of an N2-edge-labeled graph G =
(V,E, l) and some weight vector (ω1, ω2) searches some perfect matching M of G such
that

�
e∈M

(ω1 · l1(e) + ω2 · l2(e)) is minimal. In order to reduce W-O to Minimum
Matching, we transform G to the N1-edge-labeled graph G� = (V,E, l�) such that l�(e) =
ω1 · l1(e) + ω2 · l2(e) for all e ∈ E. Minimum Matching is polynomial-time solvable, and
its solution for G� yields an optimal solution of W-O for G and (ω1, ω2).

2. It is NP-hard to find the optimal value for one objective with a constraint on the other
[PY82], hence the Ci-problems of 2-MM are NP-hard.

For 2-SP and 2-MST the proposition can be shown analogously, where the NP-hardness follows
from [Han79, PY82].

Proposition 4.7. Let O = 2-QDE.

1. D-O is polynomial-time solvable.

2. W-O is NP-hard.

Proof. Consider O = 2-QDE.

1. C1-O is the single-objective problem that on input of a, b, c, b2 ∈ N searches for the smallest
x ∈ N such that ∃y ∈ N[y2 ≤ b2 ∧ ax2 + by2 − c ≥ 0]. Note that in the case of b2 not
being a square, replacing it by the greatest square smaller than b2 does not change the
problem. So we can assume b2 to be a square. If c ≤ bb2, we obviously have x = 0, and
if c > bb2 and a = 0, there is no solution. Otherwise, we have c > bb2 and a > 0, which

directly implies x =
��

c−bb2
a

�
. Since all computations can be carried out and all cases

can be distinguished efficiently, C1-O and D-O are polynomial-time solvable.

2. The set QDE = {(a, b, c) ∈ N | ∃x, y ∈ N[ax2 + by2 − c = 0]} is NP-complete [MA78]. We
reduce QDE to W-O. For given (a, b, c) we solve W-O for the weight vector w = (a, b). If
no solution is found, then S(a,b,c) = ∅ and hence (a, b, c) /∈ QDE. Otherwise, let (x, y) be
the solution of W-O, i. e., x, y ∈ N such that ax2 +by2−c ≥ 0 and ax2 +by2 is minimal. It
follows that (a, b, c) ∈ QDE if and only if ax2 + by2 − c = 0. This shows the NP-hardness
of W-O.

Proposition 4.8 ([HvdV90]). For O = 2-LF, E-O is polynomial-time solvable.

Proof. Hoogeveen and van de Velde [HvdV90] show that 2-LF is polynomially bounded and
that there exists a polynomial-time algorithm that on input x computes some S ⊆ Sx

opt such
that fx(S) = fx(Sx

opt) [HvdV90, Theorem 8], [Hoo92, page 15].

Proposition 4.9 ([Bak74, Hoo92]). Let O = 2-LWF, let L1-O be the solution notion that
first minimizes the maximum lateness, and L2-O the notion that first minimizes the weighted
flowtime.

1. L1-O is NP-hard.

9

2. L2-O is polynomial-time solvable.

Proof. 1. Scheduling problems are often denoted by the three-field notation scheme α|β|γ
introduced by Graham et al. [GLLK79], where α describes the machine environment, β
the job constraints, and γ the objective function. In this notation, the problem L1-O is
written as 1| |Fh(Lmax,

�
wjCj), where the Fh indicates that the optimization is hierar-

chical such that Lmax is the primary and
�

wjCj the secondary objective. Hoogeveen
[Hoo92, Theorem 11] shows the NP-hardness of 1| |Fh(Lmax,

�
wjCj).

2. The problem 1| |Fh(
�

wjCj , Lmax) is solved in time O(n log n) by sequencing the jobs in
nondecreasing order of the ratios pi/wi (which minimizes the weighted flowtime) such that
ties are broken by sequencing the jobs in nondecreasing order of their due dates (which
minimizes the maximum lateness) [Bak74], [Hoo92, page 17]. Hence L2-O is polynomial-
time solvable.

Proposition 4.10. For O = 2-TSP it holds that A-O is NP-hard.

Proof. Let G1 = (V,E, l1) be an instance of single-objective TSP (1-TSP), i. e., an N-edge-
labeled graph. G2 = (V,E, l2) is an instance of 2-TSP where l2(e) = (l1(e), l1(e)) for e ∈ E. A
tour is optimal for G2 if and only if it is optimal for G1. So A-O is NP-hard.

Problem O A-O L1-O L2-O W-O S-O,D-O,Ci-O Ref.

2-LF P P P P P Prop. 4.8
2-MM P P P P NP-hard Prop. 4.6
2-SP P P P P NP-hard Prop. 4.6
2-MST P P P P NP-hard Prop. 4.6
2-QDE P P P NP-hard P Prop. 4.7
2-LWF P NP-hard P NP-hard NP-hard Prop. 4.9
2-TSP NP-hard NP-hard NP-hard NP-hard NP-hard Prop. 4.10

Table 1: Separation of NP-hardness notions for multi-objective problems. ‘P’ indicates that this solution
notion for the problem is polynomial-time solvable. Li-O denotes the lexicographical problem where the
i-th objective is the primary one.

As a consequence, under the assumption P �= NP we can prove the strictness of the Turing-
reduction order shown in Theorem 3.2 and Figure 1.

Corollary 4.11. If P �= NP then there exist 2-objective problems O1,O2,O3,O4,O5 where all
objectives have to be minimized such that the following holds.

1. L-O1 �≤
p
T A-O1

2. W-O2 �≤
p
T L-O2

3. D-O3 �≤
p
T L-O3

4. D-O4 �≤
p
T W-O4

5. W-O5 �≤
p
T D-O5

10

Further research: The solution notions A-O, L-O, W-O, S-O, D-O, Ci-O, and E-O
aim at the computation of an optimal solution. If one is interested in the hardness of a multi-
objective problem, then it makes sense to consider also the computation of values of optimal
solutions. For instance, Ehrgott [Ehr05] calls a multi-objective problem NP-complete, if the
related decision problem is NP-complete. The latter problem is the question of whether there
exists a solution that satisfies given contraints, which is polynomial-time Turing equivalent to
the computation of the values of optimal solutions. Clearly, hardness with respect to value
computations implies hardness with respect to solution computations, but the converse seems
not to be true. At this point, further research is neccessary.

5 Multi-Objective Approximation

We define several approximation notions for multi-objective problems and study their relation-
ships. Moreover, we show that if all objectives have to be minimized, then approximability
results translate from single-objective to multi-objective optimization (cf. Table 2 for exam-
ples). In contrast, such translations are not possible for problems where all objectives have to
be maximized, unless P = NP. Figure 2 summarizes the results obtained in this section.

Wδ-O

Eα-O Dβ-O

Sγ-O

Aσ-O

δ := max{α1, . . . , αk}

β := (kδ, . . . , kδ)
[← = ≤]

β := α

α := β(1 + ε)
β := γ

2

σ := (β2
1 , β2)

[k = 2]

σ := γ

Figure 2: Implications between polynomial-time solvability of approximate solution notions for any
k-objective problem O where ε > 0 can be chosen arbitrarily close to zero. Dashed lines indicate a
conditional implication where the condition is shown in brackets. Note that α,β, γ, σ ∈ Rk, δ ∈ R and
Wδ-O is only defined if all objectives are minimized or all are maximized.

5.1 Notions of Multi-Objective Approximation

We discuss reasonable concepts of “approximately solving O” for a k-objective problem O =
(S, f,←) where ← is obtained from ←1, . . . ,←k. We start with the α-approximate version of
E-O, where α = (a1, . . . , ak) for a1, . . . , ak ≥ 1.

Eα-O α-Approximate every-solution notion
Compute a set of solutions that α-dominates every solution.
Input: instance x
Output: some S� ⊆ Sx such that ∀s ∈ Sx ∃s� ∈ S�[s� α

← s]

In Section 3 we argued that E-O is not an appropriate solution notion due to its large outputs.
In contrast, approximations of E-O are very useful and feasible. Papadimitriou and Yannakakis
[PY00] show that Eα-O has polynomial-size outputs for every α = (1+ ε, . . . , 1+ ε) with ε > 0.
This means that there exists a polynomial p such that for all x there exists an S� ⊆ Sx with
#S� ≤ p(|x|) such that ∀s ∈ Sx ∃s� ∈ S�[s� α

← s]. Hence there exist small and quite precise
approximations for Sx, but in many cases it is hard to compute these approximations. We also
consider the following α-approximations.

11

Aα-O α-Approximate arbitrary-optimum notion
Compute a solution that weakly α-dominates an arbitrary optimal solution.
Input: instance x
Output: an s ∈ Sx such that s

α
← t for some t ∈ Sx

opt or report that Sx = ∅

Sα-O α-Approximate specific-optimum notion
Compute a solution that weakly α-dominates an optimal solution specified by a given cost
vector.
Input: instance x, cost vector c ∈ Nk

Output: an s ∈ Sx such that s
α
← t

α
← c for some t ∈ Sx

opt or report that there is no s ∈ Sx

such that s ← c

Dα-O α-Approximate dominating-solution notion
Compute a solution that weakly α-dominates a given cost vector.
Input: instance x, cost vector c ∈ Nk

Output: some s ∈ Sx such that s
α
← c or report that there is no s ∈ Sx such that s ← c

The performance of approximations that correspond to single-objective problems like W-O
is specified by a real number δ instead of a vector of real numbers α. Here we consider the
following δ-approximations, where δ ≥ 1. Similar to W-O, we consider Wδ-O only for multi-
objective problems where all objectives have to be minimized (resp., maximized). Note that in
this case, ←1 below can be replaced by any of the ←i.

Wδ-O δ-Approximate weighted-sum notion (if all objectives are minimized or all maxi-
mized)
Single-objective problem that weights the objectives in a given way.
Input: instance x, weight vector ω ∈ Nk

Output: some s ∈ Sx such that
�

k

i=1 ωifx

i
(s) δ

←1
�

k

i=1 ωifx

i
(s�) for all s� ∈ Sx or report

that Sx = ∅

Cδ

i -O δ-Approximate constraint notion for the i-th objective
Single-objective problem that approximates the i-th objective while respecting constraints
on the remaining objectives.
Input: instance x, constraints b1, . . . , bi−1, bi+1, . . . , bk ∈ N
Output: for Sx

con = {s ∈ Sx | fx

j
(s) ←j bj for all j �= i} return an s ∈ Sx

con with

s
δ
←i opti(Sx

con) or report that Sx
con = ∅

We disregard approximations for the lexicographical problem L-O, since here it is not clear
how to measure the performance of the approximation. Observe that each of these above
notions coincides with its exact version if α = (1, . . . , 1) or δ = 1, respectively. Note that if O
is a single-objective problem, then Aδ-O, Sδ-O, Dδ-O, Wδ-O, and Cδ

1-O are polynomial-time
Turing equivalent to computing a δ-approximation for the single-objective problem.

Further research: Although D-O and Ci-O are polynomial-time Turing equivalent, they
can considerably differ with respect to their approximability. For example, for O = 2-EDC
(2-objective exact disk cover) and for every δ > 1 it holds that E(δ,δ)-O and D(δ,δ)-O are
polynomial-time solvable. In contrast, for every δ > 1 it holds that C(δ,δ)

1 -O and C(δ,δ)
2 -O are

not polynomial-time solvable, unless P = NP [GRS08]. Regarding the nonapproximability of

12

multi-objective problems only very few results are known. Here many questions remain open
for further reserach.

Vassilvitskii and Yannakakis [VY05] investigate the problem of computing a good approxi-
mation for Sx

opt using as few solutions as possible. Here for a given instance x and a maximum
number of solutions l, one has to find some S ⊆ Sx with #S ≤ l such that (1) there is some
α ≥ 1 such that S is a solution to Eα-O on input x, and (2) there are no α� < α and S� ⊆ Sx

with #S� ≤ l such that S� is a solution to Eα
�-O on input x.

For k-objective problems the performance of an approximation is given by a vector α ∈ Rk.
Two such vectors can be incomparable and hence trade-offs are possible at the level of ap-
proximability. A typical 2-objective problem does not have a single best approximation ratio
α, but there may exist a trade-off curve of incomparable best approximation ratios. Glaßer,
Reitwießner, and Witek [GRW09] discuss evidence suggesting that metric 2-TSP has such ap-
proximation trade-offs.

5.2 Relations Between the Approximation Notions

We study relationships among the approximate problem notions defined above. Papadimitriou
and Yannakakis [PY00] demonstrate a close connection between E-O and D-O in the sense that
up to a factor of 1 + ε both notions have the same approximability. We restate this result in a
slightly extended version.

Theorem 5.1. Let O = (S, f,←) be a k-objective problem, α = (a1, . . . , ak) where ai ≥ 1, and
ε = (ε1, . . . , εk) where εi > 0.

1. Eα-O polynomial-time solvable =⇒ Dα-O polynomial-time solvable

2. Dα-O polynomial-time solvable =⇒ Eα(1+ε)-O polynomial-time solvable
(running time polynomially bounded in |x|+

�
i
1/εi)

Proof. Let O = (S, f,←) be some k-objective problem.

1. Suppose we obtain S� as a solution to Eα-O in polynomial time. To solve Dα-O for some
c ∈ Nk in polynomial time, we check whether there is some s� ∈ S� with s�

α
← c. If there

is such s� ∈ S�, we are done. On the other hand, if there is no s� ∈ S� with s�
α
← c, there

cannot be any s ∈ Sx with s ← c (otherwise S� is not a valid solution to Eα-O, because
there is no solution s� ∈ S� that α-dominates s), and we are done as well.

2. We will construct some polynomial-sized lattice that covers the entire solution value space
and then show how to find approximations of arbitrary solutions.

By the definition of k-objective problems, there is some polynomial p such that fx

i
(s) ≤

2p(|x|) for every instance x, every solution s ∈ Sx, and 1 ≤ i ≤ k.

Fix some problem instance x, and let δ = min
1≤i≤k

εi, r = �
1
δ
�, and t = r · p(|x|) + 1. We

show that (1 + δ)t bounds the value of every objective. From

(1 + δ)r =
r�

j=0

�
r

j

�
δj =

�
r

0

�
δ0 +

�
r

1

�
δ1 +

r�

j=2

�
r

j

�
δj
≥ 1 + r · δ ≥ 1 +

1
δ
· δ = 2

we obtain

fx

i (s) ≤ 2p(|x|) < 2p(|x|)(1 + δ) ≤ ((1 + δ)r)p(|x|)(1 + δ) = (1 + δ)r·p(|x|)+1 = (1 + δ)t.

13

Next, consider the sets I = {(1 + δ)j | 0 ≤ j ≤ t} and L = (I ∪ {0})k. The elements of
L cover the entire solution value space in the sense that for every solution s ∈ Sx there
is some l ∈ L such that l

(1+δ)
← s ← l. It even holds that �l�

(1+δ)
← s ← �l�, where �l�

denotes the vector obtained from l by rounding each component towards its direction of
optimization. By s ← �l�, given x and �l� as input, any solution for Dα-O must consist

of some s� ∈ Sx with s�
α
← �l�, thus s�

α(1+δ)
← s.

To solve Eα(1+ε)-O, it hence suffices to solve Dα-O for every �l� where l ∈ L (note that
δ ≤ εi for all i). This is possible in time polynomial in |x| +

�
k

i=1
1
εi

, since #L =
(�1

δ
� · p(|x|) + 3)k and since Dα-O is solvable in time polynomial in |x|.

Note that the algorithm for Eα(1+ε)-O calls Dα-O at every point of some polynomial-sized
lattice built over ε. If, however, O is polynomially bounded, we can instead call Dα-O for
every possible solution value and thereby obtain a solution to Eα-O. Hence, for multi-objective
problems that are polynomially bounded, Eα-O and Dα-O are equivalent.

Theorem 5.2. Let O = (S, f,←) be a k-objective problem and α = (a1, . . . , ak) with ai ≥ 1.

1. Dα
2-O ≤

p
T Sα-O and Aα-O ≤

p
T Sα-O

2. A(α2
1,α2)-O ≤

p
T Dα-O if k = 2

3. If all objectives have to be minimized (resp., maximized) and Eα-O is polynomial-time
solvable, then Wmaxi(αi)-O is polynomial-time solvable.

Proof. Let O = (S, f,←) be a k-objective problem with ← = (←1, . . . ,←k), instance x and
α = (a1, . . . , ak) with ai ≥ 1.

1. We call Sα-O for instance x and cost vector c as they are given in Dα-O. If Sα-O reports
that there is no s ∈ Sx such that s ← c we are done. Otherwise, Sα-O returns some
s ∈ Sx, hence there is some t ∈ Sx

opt with s
α
← t

α
← c, which implies s

α
2

← c, hence s is a
solution to Dα

2-O.

For the second part, we call Sα-O with some cost vector c such that c is dominated by
the entire solution value space. If Sx �= ∅, we get some s ∈ Sx such that s

α
← t

α
← c for

some t ∈ Sx
opt, which solves Aα-O.

2. Suppose k = 2, Sx �= ∅, and let s ∈ opt2(opt1(Sx)). Clearly, s is optimal. Given
polynomial-time solvability of Dα-O, we perform a binary search over Sx that optimizes
fx

1 and obtain a solution s� ∈ Sx with fx

1 (s�) α1
←1 fx

1 (s). However, s� might have an
inappropriate value in fx

2 . For that reason, we minimize fx

2 through a second binary
search where we call Dα-O again and keep the first component of the cost vector fixed
to fx

1 (s�). Since fx(s) ← (fx

1 (s�), fx

2 (s)), this binary search finds a solution ŝ ∈ Sx with

ŝ
α
← (fx

1 (s�), fx

2 (s)), and together with fx

1 (s�) α1
←1 fx

1 (s) we get fx

1 (ŝ)
α

2
1
←1 fx

1 (s) and
fx

2 (ŝ) α2
←2 fx

2 (s).

3. Suppose all objectives have to be minimized (the theorem can be shown analogously
if all objectives have to be maximized). For any instance x and weight vector ω =
(ω1, ω2, . . . ,ωk), if Sx �= ∅ then there is some ŝ ∈ Sx that minimizes

�
k

i=1 ωifx

i
. Let S�

be a solution of Eα-O. Then there must be a solution s ∈ S� such that s
α
← ŝ, hence

14

fx

i
(s) ≤ αifx

i
(ŝ) for all i, which implies

k�

i=1

ωif
x

i (s) ≤
k�

i=1

ωiαif
x

i (ŝ) ≤ max
i

(αi)
k�

i=1

ωif
x

i (ŝ) ≤ max
i

(αi)
k�

i=1

ωif
x

i (s�)

for all s� ∈ Sx. It hence suffices to return a solution s∗ ∈ S� that minimizes
�

k

i=1 ωifx

i
,

which can be extracted from S� in polynomial time, because S� has polynomial cardinality.

Further research: Even though A-O can be reduced to all exact solution notions, it is
not clear whether similar implications hold for Aα-O. For k > 2, the reducibility of Aα-O to
approximate problem notions other than Sα-O remains open. Moreover, we are interested in
improvements or lower bounds for the implications in Figure 2.

5.3 Pareto Minimization versus Scalar Minimization

We show that for multi-objective problems O where all objectives have to be minimized, approx-
imability results translate from single-objective to multi-objective optimization. In particular,
if Wδ-O is polynomial-time solvable, then there exists some c ≥ 1 such that Dcδ-O and Ecδ-O
are polynomial-time solvable. Table 2 shows examples for such translations.

Let us first review some properties of norms as they are important in this section. A norm
|| · || on Rk is monotone, if for all vectors x = (x1, . . . , xk)T , y = (y1, . . . , yk)T ∈ Rk it holds that

|x1| ≤ |y1| ∧ · · · ∧ |xk| ≤ |yk| ⇒ ||x|| ≤ ||v||.

Two norms || · ||a and || · ||b on the same space are equivalent, if there exist constants c1, c2 > 0
such that for all x,

c1||x||b ≤ ||x||a ≤ c2||x||b.

It is well known that all norms on Rk are equivalent. Important examples of norms on Rk

are the p-norms ||(x1, . . . , xk)T ||p = (
�

k

i=1 |xi|
p)1/p defined for real numbers p ≥ 1 and the

maximum norm ||(x1, . . . , xk)T ||∞ = maxi |xi|, which are all monotone, even if the components
of the vectors are weighted by fixed non-negative numbers. Furthermore, for any p ≥ 1 and any
x ∈ Rk it holds that ||x||∞ ≤ ||x||p ≤ k1/p||x||∞.

The next two lemmas tell us how to translate approximations for weighted norms of vectors
to the weak approximate dominance relation and vice-versa.

Lemma 5.3. Let k ≥ 1 and let ← = (≤, . . . ,≤) be the k-dimensional ≤. For any norm || · ||

on Rk there is some ĉ ≥ 1 such that for any δ ≥ 1 and x, v ∈ Nk

x
(δ,...,δ)
← v =⇒ ||x||

ĉδ

≤ ||v||.

In particular, if || · || is monotone then ĉ = 1, which is the case for any (weighted) p-norm
and the (weighted) maximum norm.

Proof. First, suppose || · || is monotone. We get

x
(δ,...,δ)
← v =⇒ (x1 ≤ δv1 ∧ · · · ∧ xk ≤ δvk)

=⇒ ||x|| ≤ ||(δv1, . . . , δvk)T
||

=⇒ ||x|| ≤ δ||v||,

15

which shows the lemma for the monotone case. Next, suppose || · || is not monotone. By the

equivalence of norms on Rk there are constants c1, c2 > 0 such that x
(δ,...,δ)
← v implies

c1||x|| ≤ ||x||∞ ≤ δ||v||∞ ≤ c2δ||v||,

which yields the desired result for the general case with ĉ = c2
c1

. Furthermore, observe that
c1||x|| ≤ ||x||∞ ≤ c2||x|| immediately implies c2

c1
≥ 1.

Lemma 5.4. Let k ≥ 1 and let ← = (≤, . . . ,≤) be the k-dimensional ≤. For any norm || · ||

on Rk there is some c̃ ≥ 1 such that for all δ ≥ 1 and x, v ∈ Nk

||Wx|| ≤ δ||Wv|| =⇒ x
(c̃δ,...,c̃δ)
← v

where W = diag(ω1, . . . ,ωk) and

ωi =

�
�δc̃�+ 1 if vi = 0
1/vi if vi �= 0.

In particular, if || · || is a p-norm then c̃ = k1/p and c̃ = 1 for the maximum norm.

Proof. By the equivalence of norms on Rk, there is some C > 0 such that ||x||∞ ≤ C||x|| for all
x ∈ Rk. Set c̃ = C maxb∈{0,1}k ||b|| (b = (1, . . . , 1)T if the norm is monotone) and observe that
the following inequality holds for any i, any x ∈ Nk and any v ∈ Nk.

ωixi = (Wx)i ≤ ||Wx||∞ ≤ C||Wx|| ≤ Cδ||Wv||
(∗)
≤ Cδ max

b∈{0,1}k

||b|| = δc̃

Note that for the inequality (∗), we used that Wv ∈ {0, 1}k.
If vi �= 0, this means that xi ≤ c̃δvi and for vi = 0, we get xi ≤

δc̃

�δc̃�+1 < 1 and thus xi = 0
(since xi ∈ N), which again yields 0 = xi ≤ c̃δvi = 0.

Thus, we get xi ≤ c̃δvi for any i and the main part of the lemma is proved.
The second part is obtained by observing that C = 1 for any p-norm and for the maximum

norm and that ||(1, . . . , 1)T ||p = k1/p for any p-norm and ||(1, . . . , 1)T ||∞ = 1.

In order to apply these results to multiobjective optimization, we need to generalize the
definition of the weighted-sum notion to a weighted-norm notion. For some k-objective problem
O where all objectives have to be minimized, some norm || · || on Rk, and some δ ≥ 1 we define
the following.

Wδ

||·||
-O δ-Approximate weighted-norm notion
Single-objective problem that first weights the objectives and then applys a norm.
Input: instance x, weight vector ω ∈ Nk

Output: some s ∈ Sx such that ||Wfx(s)T || ≤ δ||Wfx(s�)T || for all s� ∈ Sx where W =
diag(ω1, . . . ,ωk) or report that Sx = ∅

This notion generalizes Wδ-O, since Wδ-O = Wδ

||·||1
-O, the δ-approximate weighted-1-norm

notion. Note that the above definition can easily be extended for problems where all objectives
have to be maximized.

16

Proposition 5.5. For any norm || · || on Rk there is some c ≥ 1 such that for any k-objective
problem O = (S, f,≤) and any δ ≥ 1 it holds that

D(cδ,...,cδ)-O ≤
p
T Wδ

||·||
-O.

In particular, if || · || is a p-norm then c = k1/p and c = 1 for the maximum norm.

Proof. We show how D(cδ,...,cδ)-O can be solved in polynomial time relative to Wδ

||·||
-O. Let the

instance x ∈ N and the cost vector v ∈ Nk be the input. For the sake of clarity, we use ←
instead of ≤ in a multidimensional context. Let ĉ, c̃ ≥ 1 be the constants from Lemmas 5.3 and
5.4 corresponding to || · || and let c = ĉc̃. Furthermore, let (as in Lemma 5.4) ωi = �δc̃� + 1
if vi = 0 and ωi = 1/vi if vi �= 0 and let V be the product of all nonzero entries in v (V = 1
if v = (0, . . . , 0)) and ω�

i
= V ωi. Note that the weights ω�

i
are natural numbers, so we can call

the algorithm for Wδ

||·||
-O with weights ω�

i
. If we get a solution s from this call, we return s if

fx(s)
(cδ,...,cδ)
← v. In all other cases, we report that there is no s ∈ Sx such that s ← v.

For the correctness of this algorithm, we show that if there is some p ∈ Sx with p ← v, then
the algorithm returns some solution s ∈ Sx such that s

(cδ,...,cδ)
← v. Let W = diag(ω1, . . . ,ωk)

and W � = diag(ω�1, . . . ,ω�k). Observe that any algorithm for Wδ

||·||
-O must return a solution

if Sx �= ∅, which is the case here. So the algorithm must return a solution s ∈ Sx with
||W �fx(s)T || ≤ δ||W �fx(s�)T || for all s� ∈ Sx. In particular, from Lemma 5.3 we obtain

||W �fx(s)T
|| ≤ δ||W �fx(p)T

|| ≤ ĉδ||W �vT
||.

Together with W � = V W this yields

V ||Wfx(s)T
|| ≤ V ĉδ||WvT

||.

Now Lemma 5.4 tells us that fx(s)
(cδ,...,cδ)
← v and so s is returned correctly.

For the runtime of the algorithm note that the size of the weights is polynomial in the size
of v and the test if fx(s)

(cδ,...,cδ)
← v is also possible in polynomial time.

Furthermore, the particular values for c result from the particular values for ĉ and c̃.

Corollary 5.6. For any k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

D(kδ,...,kδ)-O ≤
p
T Wδ-O.

Proposition 5.7. For any norm || · || on Rk there is some c� ≥ 1 such that for any k-objective
problem O = (S, f,≤) and any δ ≥ 1 it holds that

Wc�δ
||·||

-O ≤
p
T D(δ,...,δ)-O.

In particular, if || · || is a p-norm then c� = k1/p and c� = 1 for the maximum norm.

Proof. Let the instance x and the weights ω1, . . . ,ωk ∈ N be inputs for Wδ

||·||
-O. For the

sake of clarity, we use ← instead of ≤ in multidimensional contexts. Let ω�
i

= 1/ωi if ωi �= 0
and otherwise, let ω�

i
be some number larger than any possible output of fx. Using binary

search with queries to D(δ,...,δ)-O we determine some solution s ∈ Sx and some r ∈ N such
that s

(δ,...,δ)
← (rω�1, . . . , rω�k) ∈ Nk and there is no s� ∈ Sx such that s� ← (rω�1 − 1, . . . , rω�

k
−

1). This means that for any s� ∈ Sx, there is some i such that fx

i
(s�) ≥ rω�

i
. This can

only happen if ωi �= 0 and thus we get ||(ω1fx

1 (s�), . . . ,ωkfx

k
(s�))T ||∞ ≥ r for all s� ∈ Sx.

17

Regarding s, we get ωifx

i
(s) ≤ δr for all i, which means that ||(ω1fx

1 (s), . . . ,ωkfx

k
(s))T ||∞ ≤

δr ≤ δ||(ω1fx

1 (s�), . . . ,ωkfx

k
(s�))T ||∞ for all s� ∈ Sx and thus s is a correct output for the problem

if the norm is the maximum norm. Otherwise, there are constants c1, c2 > 0 by the equivalence
of norms such that ||(ω1fx

1 (s), . . . ,ωkfx

k
(s))T || ≤

c2
c1

δ||(ω1fx

1 (s�), . . . ,ωkfx

k
(s�))T || for all s� ∈ Sx,

which completes the first part of the assertion with c� = c2
c1

.
The second part is obtained by observing that c2

c1
= k1/p for a p-norm.

Corollary 5.8. For any k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

D(δ,...,δ)-O ≡
p
T Wδ

||·||∞
-O.

Note that the factor c� provided by Proposition 5.7 is quite large, especially for the 1-norm.
By Theorems 5.2.3 and 5.1.2 we know that (for α1 = · · · = αk) the much better factor (1 + ε)
is possible by first solving Eα(1+ε)-O for some ε > 1. This result can be extended to general
monotone norms.

Proposition 5.9. Let O = (S, f,←) be a k-objective problem where ← = ≤ or ← = ≥, let || · ||
be some monotone norm on Rk and α = (a1, . . . , ak) with ai ≥ 1.

If Eα-O is polynomial-time solvable, then Wmaxi(αi)
||·||

-O is polynomial-time solvable.

Proof. We show this similarly to Theorem 5.2.3. Suppose all objectives have to be minimized
(the proposition can be shown analogously if all objectives have to be maximized). For any
instance x and weight vector ω = (ω1, ω2, . . . ,ωk) ∈ Nk, if Sx �= ∅ then there is some ŝ ∈ Sx

that minimizes ||Wfx

i

T
|| for W = diag(ω1, . . . ,ωk). Let S� be a solution of Eα-O. Then there

must be some s ∈ S� such that s
α
← ŝ, hence

fx

i (s) ≤ αif
x

i (ŝ) ≤ max
i

(αi)fx

i (ŝ)

for all i, which implies

||Wfx(s)T
|| ≤ ||W max

i

(αi)fx(ŝ)T
|| ≤ max

i

(αi)||Wfx(ŝ)T
|| ≤ max

i

(αi)||Wfx(s�)T
||

for all s� ∈ Sx. It hence suffices to return a solution s∗ ∈ S� that minimizes ||WfxT
||, which

can be extracted from S� in polynomial time, because S� has polynomial cardinality.

Corollary 5.10. The following statements are equivalent for some k-objective problem O =
(S, f,≤):

• Dα-O is polynomial-time solvable for some α = (α1, . . . ,αk) with αi ≥ 1.

• Wδ-O is polynomial-time solvable for some δ ≥ 1.

• Wδ

||·||
-O is polynomial-time solvable for some norm || · || on Rk and some δ ≥ 1.

Further research: By adjusting the individual weights in the reductions, one can change
the approximation for Dα-O in the sense that one can improve the factor for some criteria at
the expense of others. It can be further investigated if there are problems where this yields new
approximation results, especially for problems where approximation trade-offs are assumed to
exist.

18

Problem O Definition solvable in P Ref.

2-objective minimum
vertex cover

(S, f,≤), instances are N2-node-labeled graphs G = (V, E, l),

S
G = {C | C is a vertex cover for G} and f

G(C) =
�

v∈C
l(v)

D(4,4)-O [BYE85]
[MS85]

2-objective minimum
TSP with repetitions

(S, f,≤), instances are N2-edge-labeled graphs G = (V, E, l),

S
G = {H | H ⊆ E is a closed walk visting each vertex at least

once} and f
G(H) =

�
e∈H

l(e)

D(3,3)-O [Chr76]

2-objective minimum
k-spanning tree

(S, f,≤), instances are pairs (G, k) where G = (V, E, l) is an

N2-edge-labeled graph, k ≤ |V |, S
G = {T | T ⊆ E is a subtree

of G}, and f
G(T) =

�
e∈T

l(e)

D(6,6)-O [Gar96]

2-objective minimum
k-cut

(S, f,≤), instances are pairs (G, k) where G = (V, E, l) is an

N2-edge-labeled graph, 2 ≤ k ≤ |V |, S
G = {(C1, . . . , Ck) |

(C1, . . . , Ck) is a partition of V }, and f
G(C1, . . . , Ck) =

�
l(e)

where the sum runs over all edges e = (u, v) such that u, v are

in different Ci

D(4,4)-O [SV91]

Table 2: Examples for multi-objective approximability results directly obtained from known single-
objective results by applying Corollary 5.6.

5.4 Pareto Maximization versus Scalar Maximization

The previous subsection showed that for problems where all objectives have to be minimized,
approximability results translate from single-objective to multi-objective optimization (Corol-
lary 5.6). We now show the limits of such translations and prove that they are impossible for
maximization problems, unless P = NP. More precisely, the following holds for a restricted
version O of the 2-objective maximum clique problem.

1. W-O is polynomial-time solvable.

2. For every α1, α2 ≥ 1, E(α1,α2)-O and D(α1,α2)-O are not polynomial-time solvable, unless
P = NP.

Definition 5.11 (k-Objective Maximum Clique).

k-CLIQUE = (S, f,≥) where instances are Nk-node-labeled graphs G = (V,E, l),
SG = {C | C ⊆ V ∧ C × C ⊆ E}, and fG(C) =

�
v∈C

l(v).

We consider 2-CLIQUE restricted to instances that consist of an arbitrary graph G =
(V,E, l) with labels (1, 1) and two additionally nodes x, y that have no connections to other
nodes and that have labels (2n + 1, 0) and (0, 2n + 1), where n = #V . More precisely, the set
of restricted instances is defined as

R = {G | G = (V ∪ {x, y}, E ∪ {(x, x), (y, y)}, l) where (V,E) is a graph with n
nodes, l(x) = (2n+1, 0), l(y) = (0, 2n+1), and l(v) = (1, 1) for v ∈ V }.

2-CLIQUErestr = 2-CLIQUE restricted to instances from R.

Proposition 5.12. Let O = 2-CLIQUErestr.

1. W-O is polynomial-time solvable.

2. There is no α ∈ R2 such that Eα-O is polynomial-time solvable, unless P = NP.

3. There is no α ∈ R2 such that Dα-O is polynomial-time solvable, unless P = NP.

19

Proof. 1. On input (V ∪ {x, y}, E ∪ {(x, x), (y, y)}, c) ∈ R and (w1, w2) ∈ Nk, the algorithm
outputs {x} if w1 ≥ w2, and {y} otherwise.

2. Assume that Eα-O is polynomial-time solvable for some α ∈ R2. We may assume α =
(c, c) for some c ≥ 1. We show that CLIQUE is c-approximable which implies P = NP
[ALM+92].

Let G = (V,E) be a graph, let n = #V , and let m be the size of the maximal clique in
G. Define the 2-CLIQUErestr instance G� = (V ∪ {x, y}, E ∪ {(x, x), (y, y)}, l) according
to the definition of R. Now consider the solution algorithm for Eα-O on input G�. Since
SG

�
opt contains a solution with value (m, m), the output of the algorithm must contain some

S ⊆ V ∪ {x, y} such that c · f(S) ≥ (m, m). From f1({y}) = 0 and f2({x}) = 0 it follows
that S �= {y} and S �= {x}. Therefore, S ⊆ V , since x and y have no edges with other
nodes. Hence c · |S| ≥ m, i. e., S is a clique of size m/c in G.

3. Follows from 2. and Theorem 5.1.

The example 2-CLIQUErestr shows the disadvantage of the weighted-sum notion for maxi-
mization problems. This effect does not only appear at artificially constructed multi-objective
problems. For instance, consider the 2-objective maximum matching problem. Here W-O is
polynomial-time solvable. Nevertheless, the following instance shows that the solutions for W-O
are not good approximations for the set of non-dominated solutions.

a b

cd

(0, 3)

(0, 3)

(3, 0)(3, 0)

(1, 1)

(1, 1)

f1

f2

2 4 6

2

4

6

Figure 3: The right-hand side shows the values of the Pareto set of the 2-objective maximum matching
instance that is shown on the left. There are exactly the three optimal values (0, 6), (6, 0), and (2, 2),
but the weighted-sum notion W-O finds only solutions with values (0, 6) and (6, 0). There is no α ∈ R2

such that (0, 6) or (6, 0) weakly α-dominates (2, 2).

References

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the intractability of approximation problems. In Proceedings 33rd Symposium on
the Foundations of Computer Science, pages 14–23. IEEE Computer Society Press,
1992.

[Bak74] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[BLS84] R. V. Book, T. Long, and A. L. Selman. Quantitative relativizations of complexity
classes. SIAM Journal on Computing, 13:461–487, 1984.

20

[BYE85] R. Bar-Yehuda and S. Even. A local ratio theorem for approximating the weighted
vertex cover problem. In Analysis and Design of Algorithms for Combinatorial
Problems, volume 25 of Annals of Discrete Mathematics, pages 27–46, 1985.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[EG00] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.

[EG02] M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization: State of the
Art Annotated Bibliographic Survey, volume 52 of Kluwer’s International Series in
Operations Research and Management Science. Kluwer Academic Publishers, 2002.

[Ehr05] M. Ehrgott. Multicriteria Optimization. Springer Verlag, 2005.

[Gar96] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In 37th An-
nual Symposium on Foundations of Computer Science, pages 302–309. IEEE Com-
puter Society Press, 1996.

[GLLK79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5:287–326, 1979.

[GRS08] C. Glaßer, C. Reitwießner, and H. Schmitz. Multiobjective disk cover admits a
PTAS. In Proceedings of 19th International Symposium on Algorithms and Compu-
tation, volume 5369 of Lecture Notes in Computer Science. Springer Verlag, 2008.

[GRW09] C. Glaßer, C. Reitwießner, and M. Witek. Improved and derandomized approx-
imations for two-criteria metric traveling salesman. Technical Report TR09-076,
Electronic Colloquium on Computational Complexity, 2009.

[Han79] P. Hansen. Bicriterion path problems. In Proceedings of the 3rd Conference on
Multiple Criteria Decision Making Theory and Application, volume 177 of Lecture
Notes in Economics and Mathematical Systems, pages 109–127. Springer Verlag,
1979.

[Hoo92] J. A. Hoogeveen. Single-Machine Bicriteria Scheduling. PhD thesis, Technical Uni-
versity of Eindhoven, 1992.

[HvdV90] J. A. Hoogeveen and S. L. van de Velde. Polynomial-time algorithms for single-
machine multicriteria scheduling. Technical Report BS-R9008, Centre for Mathe-
matics and Computer Science, Amsterdam, 1990.

[LV93] C.-Y. Lee and G. L. Vairaktarakis. Complexity of single machine hierarchical
scheduling: A survey. In P. M. Pardalos, editor, Complexity in Numerical Opti-
mization, pages 269–298. World Scientific, 1993.

[MA78] K. L. Manders and L. M. Adleman. NP-complete decision problems for binary
quadratics. Journal of Computer and System Sciences, 16(2):168–184, 1978.

[MS85] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica, 22(1):115–123, 1985.

21

[PY82] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning tree
problems. J. ACM, 29(2):285–309, 1982.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In FOCS ’00: Proceedings of the 41st Annual Sym-
posium on Foundations of Computer Science, pages 86–95, Washington, DC, USA,
2000. IEEE Computer Society.

[Sel94] A. L. Selman. A taxonomy on complexity classes of functions. Journal of Computer
and System Sciences, 48:357–381, 1994.

[SV91] H. Saran and V. V. Vazirani. Finding k-cuts within twice the optimal. In 32nd An-
nual Symposium on Foundations of Computer Science, pages 743–751. IEEE Com-
puter Society Press, 1991.

[VY05] S. Vassilvitskii and M. Yannakakis. Efficiently computing succinct trade-off curves.
Theoretical Computer Science, 348(2-3):334–356, 2005.

22

