
F

Informatik-Bericht Nr. 2010-2

Schriftenreihe Fachbereich Informatik, Fachhochschule Trier



Noname manuscript No.
(will be inserted by the editor)

Cross-Curriculum Scheduling with Themis

A Course-Timetabling System for Lectures and Sub-Events

Heinz Schmitz · Christian Heimfarth

Received: date / Accepted: date

Abstract We report on a practical implementation of a curriculum-based course-
timetabling system for pre-enrolment scheduling that is successfully used in our uni-
versity. The implementation is based on a sophisticated model that captures essential
real-world requirements in terms of course-structure modelling. Our tool Themis allows
to handle lectures that have sub-events and that are shared between different programs
of study. It can also consider whether a shared lecture is mandatory or optional in each
curriculum. Themis supports a cyclic and interactive workflow and offers comfortable
means for editing model data and timetables.

Keywords system demonstration · course-timetabling system · real-world model ·
practical implementation · cross-curriculum scheduling · sub-events

1 Specific Challenges in Real-World Course-Timetabling

Various constraints of different type, uncertain information and competing goals turn
curriculum-based course timetabling for real-world settings into a challenging task [2].
In case of our department we observe that many aspects of this scheduling problem
can be modeled using typical entities, constraints and cost components (for a standard
model see CB-CTT in [1]). However, to obtain practical solutions we need to consider
additional requirements that go substantially beyond this framework.

– Lectures are attended by students from different programs of study and each pro-
gram has its own curriculum. E.g., the lecture Theoretical Computer Science has
first-year students from the two Bachelor programs Computer Science (CS) and
Internet-based Systems (IBS), and second-year students from the Bachelor pro-
gram Digital Media and Games (DMG).

– Each lecture has a number of smaller sub-events associated with it, like tutorials
or laboratory classes. All students attending a lecture are partitioned into these
sub-events, each of limited size.

Heinz Schmitz (corresponding author), Christian Heimfarth

Trier University of Applied Sciences

Department of Computer Science, Schneidershof, 54293 Trier, Germany

E-mail: schmitz@informatik.fh-trier.de



2

– The same lecture can be mandatory for some students but optional for others,
depending on their program of study. E.g., students from IBS have to take the
lecture Web-Technologies, while CS students may choose this or some other lecture
to fill one of the placeholders in their curriculum.

– Lectures and sub-events can require more than one timeslot. In some cases, even
sub-events of the same lecture have different number of timeslots to account for
different skill levels.

– . . .

As a consequence, we have strong dependencies in terms of clashing constraints
across different curricula. Moreover, we need to construct a timetable for each term
prior to student enrolment. So there is only limited information about what students
from which program attend what lectures, and we have no information about sub-
event enrolments. Also, several other organisational requirements have to be taken
into account: No disruption or noticeable re-scheduling during a period is wanted, and,
on the other hand, there is strong need for manual editing and updating, especially
during the first weeks. The typical quantity structure of a problem instance for our
department has about 800 students, 25 lecturers and 140 events to be scheduled in
27 timeslots and 15 rooms. We must consider curricula of three Bachelor programs,
two Master programs and some other post-graduate training programs, and we expect
that the number of programs and events increases in the next years. Altogether, we
are faced with a complex scheduling problem for which it seems nearly impossible to
obtain feasible or even optimized solutions without strong tool support.

2 Overview of Themis

The ambitious goal of Themis is not only to implement some experimental algorithms
but to provide a reliable and comfortable software system for our schedulers that really
solves the real problem. In this sense Themis can be understood as a contribution to the
research agenda set up by McCollum in his paper [2]. We started Themis in 2006 and it
is under continuous develoment since then, including a complete re-implementation in
2009 to account for the lessons learned. Right now Themis is successfully used to pro-
duce workable and optimized timetables in our department and in other departments
of our university.

Inspired by the manual work of our schedulers prior to Themis, the tool supports
an interactive and cyclic workflow consisting of the steps (1) management of model
data, (2) allocation of anonymous groups of students to lectures and sub-events, (3)
automatic timetable generation, (4) manual editing of timetables, (5) presetting of
(parts of) a timetable, and returning to (1), (2) or (3).

2.1 Model Data (Step 1)

An independent set of model data, usually one per scheduling period and institutional
unit, is organized in a project, typically called (CS-Department, SummerTerm2010 ),
(EngineeringDepartment, WinterTerm2009 ) and so on. This structure allows to model
different scenarios for the same period independently. Themis has a wizard to select
and copy model data from an existing project to a new one.



3

Information Modelling. Themis allows to handle the typical main entities in
course timetabling, as there are timeslots, lectures and their sub-events, teachers and
rooms, all with a number of specific attributes and relations among each other. For
example, a lecture has a projected number of students and a number of subevents of
a maximal size; an event requires one or more timeslots, has one or more teachers
and requires or excludes a number of resources offered by rooms (e.g. computer work-
stations); teachers have, among other attributes, preferred, available and not avail-
able timeslots, and so on. Moreover, we have introduced an entity called curriculum-
semester-combination (CSC) to model groups of students that need to follow a certain
set of lectures determined by the curriculum they are enrolled to. Typical values are
BachelorCSSecondSemester or BachelorIBSFifthSemester and the like. We assign one
or more CSCs to each lecture to express its multiple usage in different curricula.

Solution Modelling. As usual, we distinguish between hard constraints that a
timetable must fulfill to be feasible, and soft constraints that it should additionally
fulfill in order to be ‘good’. Right now, our list of constraints includes typical hard
constraints, like ‘no two lectures in the same room at the same time’ or ‘if two events
are modelled in mustFollowTo-relation, then the timeslot of the second event must im-
mediately follow the timeslot of the first event on the same day’. Themis also knows a
rather large number of soft constraints that can be used to optimize feasible timetables.
Each violation leads to penalty points that are accumulated for a timetable. Examples
are ‘minimize free timeslots between events for students of the same CSC’, ‘use pre-
ferred timeslots of teachers’ and ‘a tutorial should not be the only event on a day for
a CSC’. Clearly, accumulating penalty points blurs the boundaries between different
optimization objectives. So it is important to visualize for the user how the sum of
penalties of a timetable is composed. Themis offers a tree view that clearly presents all
details of a timetable score. Moreover, the user can choose weights to assess different
objectives, up to the possibility to exclude objectives from optimization by choosing
weight zero.

Each project memorizes the list of all timetables that have been generated so far
in this project, so it is always possible to go back to ealier attempts. Each run of a
generating algorithm adds a new timetable to this list. All timetables in a project are
dynamically evaluated with respect to the current set of model data, i.e., in case of
an update, all timetables in the project are automatically re-evaluated to determine
feasibility and penalties.

2.2 Lectures and Sub-Events (Step 2)

Lectures and sub-events together with their associated mandatory and optional CSCs
impose extra complexity to timetable scheduling. We briefly describe our approach to
this problem with help of an idealized and reduced example.

Example. Suppose the lecture Web-Technologies is mandatory for the CSC Bach-
elorIBSThirdSemester with 50 students and optional for the CSC BachelorCSFifth-
Semester also with 50 students. We estimate from past terms that 25 students from
BachelorCSFifthSemester will choose this lecture and introduce four sub-events for it,
each with a limit of 20 students.

After these steps are carried out for all lectures in the project, we partition each
CSC in anonymous blocks of students and map them to sub-events. This is sufficient
for mandatory CSCs since all their students attend the lecture. In case of an optional



4

CSC for a lecture, we partition only the estimated number of attending students into
such blocks and map them to the sub-events of this lecture as well.

Example. (continued) The number of 50 students from BachelorIBSThirdSemester
is partitioned into blocks of 20, 20 and 10, the number of 25 students from BachelorCS-
FifthSemester into blocks of 10, 10 and 5. As a result we get two sub-events of Web-
Technologies each with 20 students from IBS, one sub-event with 15 students from CS
only, and one mixed sub-event of 20 students.

Blocksizes and the mapping to sub-events are determined such that the heterogene-
ity with respect to different CSCs is minimized. Clearly, this is a non-trivial optimisa-
tion problem on its own and we use a greedy algorithm to obtain working solutions. It is
carried out as a preliminary step before timetable generation. Blocksizes and mappings
can also be edited manually during the overall interactive workflow.

After this step we have information in our model about what students from which
CSC attend what lectures and sub-events. This is further exploited to determine clash-
ings of events during timetable generation by specific hard and soft constraints. An
example of such a hard constraint is ‘no two sub-events of two mandatory lectures in a
CSC with the same associated block in the same timeslot’. Penalties result, e.g., from
‘two sub-events of different optional lectures of a CSC in the same timeslot’.

2.3 Timetable Generation and Editing (Steps 3, 4 and 5)

The user can choose to call an algorithm from scratch or to select any existing timetable
in the project as an initial solution for some timetable-generating or improving algo-
rithm, respectively. So far we have implemented the following set of algorithms (for
common algorithmic approaches to this kind of problem see, e.g., [3]):

1. A contrained-based algorithm to obtain a feasible timetable (an efficient implemen-
tation of backtracking with forward-checking, degree heuristic, minimum-remaining-
value heuristic and least-constraining-value heuristic).

2. A variant of algorithm 1 where the order in which the (timeslot, room)-values for
each event are chosen depends on the penalty of the resulting partial timetable.

3. A local-search procedure with various parameters to improve feasible timetables.
4. An optimal branch-and-bound algorithm based on algorithm 2.

All algorithms display their current best values and can be interrupted by the user.
Algorithms 1 and 2 are based on a careful analysis of all hard constraints to reduce
the range for the variables in advance and during backtracking. It turned out that in
particular algorithm 1 is useful to reveal inconsistencies in model data very early. While
the resulting penalty after algorithm 1 is fairly high, we obtain optimized timetables
with small penalties from algorithms 2 and 3.

Themis has comfortable drag&drop-support for editing timetables. In the free mode
events can be moved arbitrarily to any timeslot. However, schedulers find it very helpful
to work with the supported mode of Themis during timetable editing. After choosing
an event all timeslots are coloured red or green, depending on whether a move of this
event to that timeslot results in a feasible timetable or not. Moreover, when dragging
over red timeslots, the user is provided with information about what constraints are
violated. In case of a green timeslot the new penalty is displayed in advance.

Also other features of Themis turned out to be useful in practice. To display only
specific aspects of a timetable it is possible to use filters, e.g., to show the timetable for



5

a certain CSC, a certain teacher or a certain room. Timetables can be exported in a
universal format for further publishing. Moreover, in order to support an incremental
approach Themis allows the user to freeze parts of a timetable. As a consequence,
all algorithms must maintain this presetting. Schedulers use this feature to produce
similar timetables when single entities are added or updated. The following figure
gives an impression of the screen for editing timetables.

2.4 Software Architecture and Engineering Aspects

The current release of Themis is realized as a pure java application based on the
frameworks Hibernate and Docking Frames. It has a modular architecture with separate
components for algorithms, graphical user interface and data management. Deployment
is rather easy since Themis comes as a single jar-file, already including its database
HSQLDB (which can easily be changed to any other database working with Hibernate).

We want to point out some critical aspects that we have paid attention to while
developing Themis, but which do not deal with algorithm design in particular:

– Special care must be taken to maintain system-wide data consistency, i.e., due to
complex dependencies between model entities, referential integrity must be carefully
controlled when edit and update actions are preformed. This also includes some
thoughts on storage management for the persistent entities in the model.

– There are parts in the code that are frequently executed and where the user expects
very fast response times. Among others, efficient implementations of feasibility
checks are needed. This is usually carried out on the data-structure level and cannot
be discovered in some abstract pseudo-code from a research paper.

– Common software-engineering principles like design-patterns, encapsulation and
no-dublicate-code must be strictly followed. Especially model entities and code to



6

check constraints tend to spread all over the source code with the consequence,
that maintenance and further development of the system become impossible.

– It is helpful to work with a single programming environment and language which
leads to seamless debugging of the complete application. The latter is often problem-
atic when different programming languages are used at the same time. We found
that algorithms can be implemented in java reasonably fast (compared to other
languages) when restricted to native data types.

– Due to the complex nature of the application domain there is strong need for quality
assurance in the development project.

From our experience, disregarding a single of these aspects can make the difference
between a working system and an instable prototype which cannot be used in practice.
As a consequence, there is need for various expertises in the development team which
makes such a project attractive also from an educational point of view (for Computer
Science students). Luckily, we observe a high motivation of students to contribute to
a system that affects their own academic calendar.

3 Future Work

Themis is primary designed and used to produce timetables for single departments in
universities. This is an appropriate approach in our case since only a small number of
rooms is centrally owned and must be shared between different departments. However,
there are a few programs of study that are offered in cooperation between two or more
department which implies that a common timetable is needed. We will investigate how
Themis behaves on these larger instances and what new requirements arise.

Moreover, we want to further investigate algorithmic and modelling aspects of
cross-curriculum scheduling of mandatory and optional lectures and their sub-events
(section 2.2). In particular, it seems to be difficult to generate timetables that guarantee
a certain minimal number of non-overlapping optional lectures and sub-events in each
CSC.

Acknowledgements We like to thank all other current and former members of the Themis de-
velopment team for their contributions which are F. Hermes, P. Kranz, J. Pauken, B. Schu-

macher, J. Sonntag, S. Stoffel, M. Stüber, M. Weiser. We are also thankful to the Nikolaus-

Koch-Foundation for their financial support.

References

1. F. De Cesco, L. Di Gaspero, and A. Schaerf, Benchmarking Curriculum-Based Course
Timetabling: Formulations, Data Formats, Instances, Validation, and Results, In: E. Burke

and M. Gendreau (eds.) Proceedings of PATAT ’08 (2008).

2. B. McCollum, University Timetabling: Bridging the Gap between Research and Practice,
In: E. Burke and H. Rudov (eds.), Proceedings of PATAT ’06 (selected papers), Lecture

Notes in Computer Science 3867, pages 3-23 (2007).

3. A. Schaerf, A survey of automated Timetabling, Artificial Intelligence Review, volume 13(2),

pages 87-127 (1999).


