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Abstract

Deep brain stimulation (DBS) of the subthalamic nu-
cleus (STN) has become a common procedure to alle-
viate the symptoms of advanced Parkinson’s disease.
To estimate the optimal site for placement of the defi-
nite electrode, up to five microelectrodes are inserted
at first and the neuronal activity at the electrode tip
is recorded. These microelectrode recordings (MER)
are classified to STN or non-STN signals manually
by the surgeon, which requires experience and time.

A system has been developed for automatic clas-
sification of MER signals. The classifier consists of
three levels, each of which using a specific criterion
to decide whether a MER is STN signal or not. In
the first level, the background activity is examined
and those recordings showing increased activity are
marked. The second level uses the bursty or irreg-
ular behavior of typical STN single cell activity for
taking decisions. In the last level, the spike rate of
duplicated intervals resulting from level 1 and 2 is
examined. Results from all levels are combined and
thus STN signals are identified.

To enhance the evaluation of the different charac-
teristics, signal preprocessing is performed in level 2
and level 3. Wavelet transformation is used to re-
move background activity (noise) and a multilevel 1-
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d wavelet decomposition is used to extract certain
properties of the signals.

The classifier has been tested using 2434 MERs
taken from 14 patients. Nearly 95% of the classifi-
cations matched with a specialist’s decision. The re-
maining differences were mainly due to signals lack-
ing distinctive characteristics, especially signals ex-
tracted near the border of STN.

The classifier will support the surgeon and make
the decision process for the final electrode position
more reliable and less time consuming. It can easily
be adapted for the classification of other functional
neural areas than the STN.

Keywords: DBS, STN, MER, signal classification,
wavelet transformation, Parkinson’s disease

1 Introduction

Stereotactic deep brain stimulation is a widespread
treatment option for different kinds of neurologi-
cal diseases, especially movement disorders, such as
Parkinson´s disease (PD), Dystonia, different kinds
of tremors, or chronic pain also ([1],[2]). In the treat-
ment of advanced PD the STN is considered the most
promising target. In this procedure, electrodes are
implanted permanently in the patient’s STNs. They
emit signals that reduce the effect of the chronic hy-
peractivity of STN. Especially for long-term patients,
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who suffer from side effects of the medical treat-
ment or who experience strong fluctuations in results
of medical treatment, this procedure is actually the
most promising therapy.

In the planning phase of the procedure, the tar-
get point is identified using different image modalities
like T1 and T2 weighted magnetic resonance images
(MRIs). Due to deviations between the image based
targeting and the position eventually reached (e.g.
[3] or [4]), up to five microelectrodes are inserted at
first, to determine the optimal site for the definite
electrode. The local and extra cellular electrical ac-
tivity at the tip of each microelectrode is measured
and visualized during surgery. These MERs are clas-
sified as STN or non-STN signals by the surgeon.

As a result of MER classification – either manu-
ally or automatically – the sections of each electrode’s
trajectory are labeled, which pass through the STN.
The neurosurgeon can use this information to cre-
ate a geometric association of the labeled sections
with the anatomic shape of the STN by imagination.
Now, having the seeming positions of the electrodes
in mind, the neurosurgeon can estimate the real tar-
get location and finally determine the position of the
stimulating electrode.

Classification of the MERs is sometimes ambigu-
ous even for experienced neurosurgeons. There are
different approaches for automatic analysis and clas-
sification of MER signals using statistical features or
digital spike trains [5, 6, 7]. In the following we in-
troduce a method for MER classification based on
soft-denoising and multi-level decomposition of the
MER signals. The method extracts features for a
multi-level geometric classifier independent from spe-
cific patient characteristics.

The classifier supports the surgeon to a great ex-
tend. It generalizes the procedure for positioning the
final electrode and makes it more reliable and less
time consuming.

2 Materials and Methods

MERs presented in the following were recorded using
microelectrodes, microdrive and LeadpointTMfrom
Medtronic Inc. They were recorded at the Hospi-

tal of the Merciful Brethren in Trier, Germany. The
sampling rate of all MERs is 24kHz, the signal length
is 10s.

Accordingly, all interval sizes or other thresholds
described were determined with respect to these con-
ditions. The complete procedure can be adapted
easily to handle higher sampling rates or longer se-
quences. For the usage of lower sampling rates
or shorter sequences, further testing procedures are
mandatory.

2.1 STN Signal Properties

Within the last decade, the main characteristics of
STN signals and useful methods to identify them have
been examined and described thoroughly (e.g. [8] and
[9]). Accordantly, the most useful criteria for recog-
nition of STN signals are the distribution of spikes
and bursts and an increased background noise (see
Figs. 1 and 2).
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Figure 1: MER of an area without neuronal activity
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Figure 2: MER in the proximity of STN neurons

In different publications, the main characteristics
for the discrimination of the signals are described
similarly. Nevertheless, the quantitative data about
the most important features - spike rate and spike
distribution - differ in various papers, which seams
to be natural, as these values differ from person to
person.
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A typical trajectory might intersect the overlying
zona incerta before the electrode reaches STN and fi-
nally the underlying substantia nigra (SNr). As up to
five electrodes are used, at least two or three of them
will show STN signals. Benazzouz et. al. [8] describe
the signals vividly: “During a typical exploratory
track, we can observe a very low background noise
in the zona incerta and almost complete absence of
single cell recording. Penetration of the electrode tip
into the STN is characterized by a sudden increase in
background activity and single cell activity of sponta-
neously active neurons. The exit of electrode tip out
of the STN corresponds to a decrease in background
noise and a loss of single cell activity. Spontaneous
neuronal activity increases again when the electrode
tips enter the substantia nigra pars reticulata (SNr)”.

In addition, the pattern of single cell activity in the
SNr is a more regular tonic activity while STN cells
exhibit an irregular or bursty firing pattern. Hutchin-
son [9] describes a mean firing rate inside STN of
37±17spikes/s, for SNr 71±23spikes/s. Benazzouz
[8] measured 42.3 ± 22spikes/s for STN. Obviously,
there is no universally valid threshold to distinguish
between STN and SNr. For some patients, the firing
rate of SNr might be lower than STN’s firing rate
of other patients or vice versa. Additional informa-
tion that can support the classification besides the
characteristics already mentioned is the length of an
individual trajectory displaying typical STN activity.

2.2 Classifier’s Architecture

Based on this knowledge about characteristical crite-
ria of the concerned neural structures, the classifier
consists of three levels. Each of these levels decides
whether a specific criterion is fullfilled or not. At
first, MERs from potential areas with neural activity
are marked. In the second step, those marked areas
are inspected with respect to the irregular bursting
pattern of STN. A key element of this step is the us-
age of wavelets to de-noise signals and to analyze only
specific frequency ranges. In some cases, multiple in-
tervals along the electrode path are classified as STN
signals according to the second level. Those intervals
are then handled by the third step that examines the
spike distribution.

The complete procedure works without global
thresholds concerning spike distribution or firing rate.
All MERs of one electrode are inspected together and
patient-specific thresholds are determined automati-
cally where it is necessary.

2.3 Level 1: Finding Neuronal Sec-
tions

In the following, a single MER is represented by a vec-
tor s. The length of this vector is samplingrate[Hz] ·
windowsize[s]. For one electrode, n recordings are
available, thus each signal si, 1 ≤ i ≤ n represents
the recording in one depth and si,j describes the j-th
discrete sample of recording i.

In this level, the MERs of potential neuronal ac-
tivity are marked in the set of MERs of one elec-
trode. Therefore, the background activity is used as
the decisive criterion. To judge whether background
activity is stronger or not, two different thresholds
are determined and used. The first threshold tmed is
calculated by

tmed =
∑n

i=1median(|si|)
n

· c (1)

wheremedian(|si|) is the median of absolute values of
MER si, which is the 50th percentile of the absolute
values of signal si. Additionally, the mean standard
deviation of all MERs is calculated by:

tstd =
∑n

i=1 σi

n
· c . (2)

Scaling the thresholds by factor c is necessary for
those electrodes that do not show any STN signals.
For them, both median and standard deviation of
different recordings si will approximately be the same
for all i, 1 ≤ i ≤ n. Thus, some signals will exceed the
threshold although they show no neuronal activity.
Real STN signals will exceed the threshold plainly,
so the threshold is increased. The value of factor c
has been determined using test data and seems to be
optimal.

In the next step, each si is subdivided into l1 in-
tervals with a length of ||si||2/l1[s]. For each interval
of each signal si, 1 ≤ i ≤ n, the standard deviation
and the median of absolute values is calculated.
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Now we can simply count the intervals that ex-
ceeded tmed and thus calculate the ratio of this num-
ber to the total number of intervals of one recording.
This result is stored in a vector of length n, where
each element represents the ratio of one signal si.
Accordingly, the same is done for those intervals that
exceed tstd. Finally, the two vectors are combined by
calculating the mean element by element.

For the following, let I be the set of indices of sig-
nals si that were identified as neuronal active accord-
ing to the first level. These are the signals, the ratio
of which exceeded a given percentage p. Unfortu-
nately, all i ∈ I are not necessarily connected: sev-
eral subsets of recordings can belong to I where other
recordings sj , j /∈ I were measured in between.

2.4 Signal Preprocessing for Level 2
and 3

Intensified background activity has been used as the
decisive criterion in the first level. The following two
levels concentrate on spikes, their number and their
distribution. To handle the spikes in an optimal man-
ner, the background activity should be removed as
well as possible, which is described in the following
section. Afterwards, the signal can be processed eas-
ier and we will concentrate on certain components
of this signal using multilevel 1-d wavelet decompo-
sition. This transformation results in a set of coeffi-
cients which is the actual input of level 2 and 3.

2.4.1 De-Noising by Soft-Thresholding

At first, we analyze the background activity in more
detail in order to removing it optimally. We can as-
sume that two different sources are responsible for
the background activity. The first source is the ac-
tivity of a large set of neurons in different distances to
the electrode. The second source might be noise pro-
duced by the recording system itself, which is present
for signals outside STN, too.

Concentrating on the first source, the signal si and
each sample si,j respectively is a sum of:

• strong single cell activity of spontanesously ac-
tive neurons close to the electrode, which pro-
duces the so-called spikes, and

• activity of a large set of neurons firing indepen-
dently and in random manner.

Thus, the samples si,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m can
be approximated as a sum of single cell activity ŝi,j

and independent and identically distributed standard
Gaussian random variables zj :

si,j = ŝi,j + zj , i = 1, . . . , n, j = 1, . . . ,m . (3)

The noise produced by the recording system can be
described equally. Thus, it is contained here too.

To remove this kind of noise or to estimate the un-
known signal ŝi “De-noising by Soft-Thresholding”
[10] is an effective tool. The result s̃i of this estimator
fullfills two different criteria. Firstly, with high prob-
ability s̃i is at least as smooth as ŝi in any of a wide
variety of smoothness measures and secondly, the es-
timator comes nearly as close in mean square to ŝi as
any measurable estimator can come to (according to
[10]). The principle of this method is illustrated in
Fig. 3.
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Figure 3: Principle of denoising by thresholding in
wavelet domain

The measured signal si represents the neuronal
activity at the electrode in time domain. This sig-
nal is transformed to wavelet domain resulting in a
set of coefficients (ck)k∈J . A threshold τ is deter-
mined and the set is transformed using this threshold.
Finally, the modified coefficients (c̃k)k∈J are trans-
formed back to time domain, resulting in the estima-
tion s̃i.

Wavelet transformation [11] is one way to describe
a signal s as a linear combination

s =
∑
k∈J

ckψk. (4)
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Where (ψk)k∈J is a set of orthonormal basis func-
tions and J is a finite set of indices. Unlike Fourier
transformation, information about the point in time
when certain frequencies appear in time domain is
preserved by wavelet transformation.

Good estimations of unknown signals ŝi can be
achieved under the following circumstances [12]:

• True signal ŝi should be from a class of signals
that can be approximated well by few coefficients
using (ψk)k∈J .

• Noise should be of a kind that cannot be com-
pressed using (ψk)k∈J . (White noise, which is
the kind of noise we want to remove, cannot be
compressed at all using orthonormal bases.)

• Level of noise is small compared to the unknown
signal.

The last interesting aspect concerning our excur-
sion on de-noising is the modification of coefficients
(for additional information on estimation of τ , see
e.g. [10] or [12]). Unlike in hard-thresholding, the
coefficients falling below τ are not just simply set to
zero; modification of coefficients is done by shrinking
them:

c̃k :=
{

0 if |ck| ≤ τ
sign(ck)(|ck| − τ) if |ck| > τ .

(5)

Fig. 4 shows the result of the process. The back-
ground activity contained in the original signal (Fig-
ure 2) is nearly completely removed and only the
spikes remain.
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Figure 4: Signal shown in Fig. 2 after noise reduction

2.4.2 Multilevel 1-D Wavelet Decomposition

Multilevel 1-D wavelet decomposition (wavedec) can
be compared to a microscope: s̃i can be viewed with

any desired scaling (magnification) at any point in
time. Therefore, wavedec uses a scaling function φ,
where φ is a short, majoritarian positive impulse [12].

In each level of the process, the signal is split into
two parts (see Fig. 5). One part is convolved with a
high-pass φhigh followed by dyadic decimation (down-
sampling) resulting in the detail coefficients cD1 of
level 1. The other part is convolved with a low-pass
φlow followed by dyadic decimation resulting in the
approximation coefficients cA1 of level 1. The latter
ones are used as input for level 2, resulting again in
detail coefficients cD2 respectively in approximation
coefficients cA2 that are used for the next level etc.

s~

low high

2 2

1cD1cA

low high

2 2

2cD2cA

low high

2 2

3cD3cA

where

X

2

Convolve with filter X

Keep the even indexed
Elements (downsampling)

Figure 5: Principle of multilevel 1-D wavelet decom-
position

The absolute degree of magnification or the inter-
esting level of the detail coefficients respectively de-
pends on the length of vector s̃i and thus the level
has to be adjusted according to the sampling rate –
increasing or decreasing the window size does not in-
fluence the resulting frequency ranges of each level.
For a sampling rate of 24kHz, level 3 is the appropri-
ate one and the detail coefficients cD3 are the ones
that are used in the following levels of the classifier.
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For other sampling rates sr, the level can be esti-
mated by

level = b(ldsr[kHz]
3kHz

+ 0, 5)c . (6)

2.5 Level 2: Identifying Potential
STN Signals

STN single cell activity is characteristically described
as irregular or bursty. This specific behavior is used
in level 2 of the classifier to decide whether a signal si

is STN or not. Therefore, the detail coefficients cD3

are used. We can assume that cD3 only contains more
or less only spikes of single cell activity. A single coef-
ficient from cD3 has a high value, if a spike with great
amplitude is contained at the corresponding point in
time in si; low values represent the absence of spikes.
This result allows a straightforward algorithm: iden-
tifying those signals with variances changing over the
time.

For this, each coefficient vector cD3,i of the cor-
responding signal si, i ∈ I is subdivided into l2 in-
tervals. For each interval, the variance of coefficients
is calculated. Afterwards, the difference between the
smallest and largest variance of each cD3,i, i ∈ I is
calculated. All the differences of the used cD3,i, i ∈ I
are used to determine a threshold. Finally, a new
set of indices K is created: each sk, k ∈ K exceeds
this threshold. Therefore, the signals, the variance
of which changes in time, are contained in this index
set.

2.5.1 Combining Results of Level 1 and 2

From the whole set of signals, two index sets I and
K are available. I represents those signals that show
neuronal activity according to level 1; K contains
those signals that show irregular, bursty behaviour.
Furthermore, we know that K ⊂ I holds.

At first, we concentrate on the si, i ∈ I. They
can be partitioned in different intervals with sig-
nals sj , j /∈ I in between: si1 ..si2 , sj , si3 ..si4 where
i1 ≤ i2 < i3 ≤ i4; i1, i2, i3, i4 ∈ I and i2 + 1 < i3.
Those individual intervals might even contain only
one recording. As the increased background activity

is a major criterion for STN activity, all intervals re-
sulting from level 1 that additionally contain at least
one signal sk, k ∈ K are tagged as STN. For most
electrodes, only one interval will fulfill this combina-
tion of criteria and this interval corresponds to the
one classified as STN by the surgeon. Table 1 con-
tains an artificial example where different combina-
tions of the level’s outcomes are shown and combined.

Index 1 2 3 4 5 6 7 8 9 10 11 12
Result 1st level N S S S N S S N N S S N
Result 2nd level N N S S N N N N N S N N
Combination N S S S N N N N N S S N

Table 1: Artificial example to illustrate the combina-
tion of results (S represents STN signals - N repre-
sents non-STN signals)

2.6 Level 3 - Removing Multiple Ar-
eas

In some rare cases, the result vector will contain mul-
tiple intervals that were classified as STN according
to level 1 and 2 as shown in the example (Table 1).
Typically, one interval might be STN, the other in-
terval SNr and according to the order, the signals
usually occur (see 2.1), the SNr signals will be the
signals with a greater index.

To distinguish the erroneously classified signals,
the spike rate or the depth can be used. The lat-
ter criterion is easy to implement: since signal acqui-
sition is stopped as soon as SNr is reached (at the
latest), the classification result of the last recordings
can be revised generally.

The complexity when using the spike rate as a cri-
terion to revise a classification is bigger. For it, the
range distribution of cd3,i, i ∈ I is examined. Let
max(cd3,i) be the coefficient with the greatest value
of the vector cd3,i. Using this maximum, we define l3
thresholds δk, 1 ≤ k ≤ l3 and calculate the values:

δk = max(cd3,i) ·
k

l3
. (7)

The range of cd3,i can now be partitioned into l3
equidistant intervals and we can count the number of
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coefficients Σi,k falling into each interval:

Σi,k =
∑

deltak−1<cd3,i≤deltak

1 . (8)

Together, the l3 sums represent the range distri-
bution of the corresponding coefficient vector. As
some signals might contain outliers produced by the
recording system, the thresholds δk are decreased us-
ing a linear factor until at least 10 coefficients of cd3,i

fulfil the condition δl3−1 < cd3,i ≤ δl3 .
Finally, the calculated range distribution is in-

spected using several conditions. If the values are
distributed equally on all intervals, the signal will not
contain distinctive spikes and the classification of this
recording can be revised. The result is also revised,
if the sum of coefficients in the larger intervals is big:
this recording is probably SNr.

As all signals of one interval are inspected, the clas-
sification result of the complete interval is revised if
and only if at least half of the classification results of
the signals belonging to this interval are revised. In
Table 1, the signals s2, s3 and s4 belong to one in-
terval, signals s10 and s11 belong to another one. As
already mentioned, the third level is applied if the
actual classification result contains two separated in-
tervals and thus, one of them needs to be corrected.
The classification result of the second interval is re-
vised if the result of either s10 or s11 is revised (or
if both results are revised). For the first interval, a
revision of the complete interval is performed if at
least two of the classification results are revised.

3 Results

The MER classification system has been developed
and implemented as a software prototype using
MatlabTM. We have used data records from Hospital
of the Merciful Brethren in Trier for system develop-
ment and testing. Each record contained MER data
and the result of manual classification for all elec-
trodes of one side of the head. Usually, MER acqui-
sition begins 9mm in front of the image based target
point and MERs are taken in 1mm steps. 5mm in
front of STN, the increment is decreased to 0.5mm.

As soon as the STN is left obviously or substantia
nigra (SNr) is reached, the acquisition is stopped.

From the available data and records 14 patients
were selected randomly. The data included MERs of
103 electrodes and a total of 2434 recordings. A sub-
set containing 4 left sides of 4 patients was used dur-
ing system development. The remaining ones were
used for validation.

Overall, 122 recordings out of 2434 were classi-
fied differently by the MER classifier as compared
to surgery records. Recordings without clear assign-
ment by the surgeon were neglected. Thus, nearly
95% of the recordings were classified correctly.

Deviations between manual and automatic classi-
fication occurred mainly in two different cases:

• One critical area is the boundary of STN, the
first recordings belonging to STN and the ones
when STN is left.

• Electrodes that did not show clear STN signals
at all, only ambiguous signals in one or two steps,
are critical too.

A few remaining deviations were due to atypical sig-
nal characteristics.

4 Discussion and Outlook

The structure of the classifier is based on a sequen-
tially ordered means of feature extraction and accord-
ing decision steps. It is built up by an hierarchical
decision scheme with linear and almost univariate de-
cision functions. Because of using a specific prepro-
cessing and sophisticated definitions of relevant fea-
tures, the feature-class relation could be considered
deterministically and patient independent.

Though it could be shown, that the classifier struc-
ture is appropriate to solve the problem, some aspects
of the outcome and possible enhancements can be dis-
cussed:

• classification results at the boundary of STN,

• combination of results of all levels with the aim
to quantify the quality of each classification re-
sult.
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The first topic contains, besides adjustments in the
classifier, further analysis of the manual classification
results. The relevant recordings should be presented
to several experts to examine if they all agree with
the classification and to learn how they decide about
those recordings.

At present, the classifier produces binary decisions:
STN or not-STN. With minor modifications in each
level, the degree of fulfillment of a criterion can be
produced in each level. E.g. not only calculating
the ratio of the intervals exceeding a threshold to the
amount of intervals, but also calculating the sum of
differences of all intervals as a result of level 1. This
would reflect the degree to which a signal is neuronal
active. Analogue approaches can be developed for
level 2 and 3. For example, we have introduced the
extracted features into a common feature space and
trained a decision system using a Fuzzy cluster algo-
rithm. The resulting Fuzzy classifier showed at least
the same results as the hierarchical one.

There exist other structures used as targets in DBS
for treatment of Parkinson’s disease, e.g. globus pal-
lidus (GPi). Additionally, the treatment of other dis-
eases like Dystonia is already common practise; other
diseases like psychic illnesses are in a promising fo-
cus of research also. Therefore, the need for MER
classification also occurs in other types of surgery.
Extending the classifier to handle various kinds of
signals seems to be a demanding but also promising
field. This task is one of the problems that we are
going to examine in the near future.
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