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Abstract: The challenge of modeling rainfall-runoff processes is to define a suitable functional re-

lationship between input variables representing precipitation measurements and the output runoff.

Depending on the system’s state, the amount of precipitation resulting in direct flow varies

strongly. Thus, state variables indicating the system’s actual state can enhance the accuracy of

rainfall-runoff models significantly. Fuzzy models of Takagi-Sugeno-type are one of the effective

approaches to simulate rainfall-runoff processes regarding the different system states. The design

of a fuzzy rainfall-runoff model consists of two essential steps: the definition of the structure (in-

put quantities, state variables, rules) and the identification of parameters in the conclusion. The

latter one can be solved automatically using data-driven techniques in an optimal way concerning

root mean square deviation. However, to solve the task of defining the structure, expert knowledge

is mandatory to identify those time series that can effectively be used in a fuzzy model. This expert

knowledge is not always available and not necessarily complete or correct. To identify effective

state variables semi-automatically, the method Time Series Knowledge Mining (TSKM) has been

used. TSKM discovers patterns representing the temporal concepts of duration, coincidence and

order. Especially the patterns representing coincidence are valuable as the temporal concept of

coincidence is used in fuzzy premises, too: the values of several state variables are evaluated si-

multaneously to determine the system’s state. TSKM was applied to identify state variables with

data from a 7 km2 catchment in the northern Black Forest in Germany. From a set of more than

100 time series that were measured resulting in a huge set of possible state variable configurations,

two soil moisture time series were identified. The fuzzy models generated using these two state

variables were more efficient than all other models previously generated. Additionally, periods of

snowfall and snowmelt could be reliably identified.

Keywords: Flood Prediction; Fuzzy Model; Time Series Knowledge Mining; Process Identifica-

tion

1 INTRODUCTION

Especially in small catchments, the reaction on precipitation varies strongly depending on the

catchment’s actual state. In dry situations after long periods without precipitation, only a small

part of rainfall will result in direct flow. In contrast, after periods with plenty of precipitation, a

large part of an additional intensive rainfall will result almost completely in direct flow, indicating

a high runoff coefficient. To identify the state of the catchment, different physical values can

be measured. Additionally, these measurements allow for the identification of runoff processes

and support the modeling of a catchment. Besides the usual values like discharge, precipitation,

air temperature, radiation etc., soil moisture measurements can enhance the determination of the

system’s state significantly. All those measurements result in a large set of available time series.
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Unfortunately, the examination of these time series is time consuming and challenging. On the

other hand, the knowledge resulting from thorough examination is mandatory to build efficient

models. A possible approach to model the rainfall-runoff processes is the usage of fuzzy logic.

But for the creation of an efficient fuzzy model, expert knowledge is required in most cases: Only

if a good combination of state variables is used in the premises to represent the system state,

an efficient fuzzy model can be developed. Thus, there arise some disadvantages: gaining expert

knowledge is time consuming; furthermore, this knowledge is not necessarily complete or correct;

for each new catchment, the examination needs to be performed again. To solve this problem, a

method needs to be applied that examines the various time series automatically and helps thereby

identifying state variables.

2 FUZZY RAINFALL-RUNOFF MODELS

Catchments are complex systems. Modeling these systems using analytical approaches is chal-

lenging as most processes involved in discharge generation are hidden, not measurable, nonlinear

or too complex. Thus, the effort in developing or computing a conceptual model is large. But

elementary dependencies between the different variables precipitation and runoff are known and

can be described: Depending on the system’s state, a certain amount of precipitation will result

in discharge. Additionally, historical time series with measurements of different values are avail-

able. These preconditions facilitate the usage of a fuzzy model (e. g. Cox [1994]). In fuzzy

systems of Tagkagi-Sugeno type (Takagi and Sugeno [1985]), the description of the system state

in the premise is separated from the quantitative influence of the variables used in the consequent.

Depending on the system’s state, these variables, e. g. precipitation, are differently weighted.

Figure 1 shows a possible design of a fuzzy model. The system uses m state variables in the

premise like shown in part a). In this example, a soil moisture time series and a temperature time

series is used. For each state variable, different fuzzy sets are defined, assigning each value from

the range of values a degree of membership by membership function μ. A linguistic term can be

applied to each fuzzy set, e.g. dry, wet, medium or warm. Overall, n rules are defined, following

the general form IF . . . AND . . . THEN . . .. In the premise (IF part), different combinations

of the individual fuzzy sets for each state variable are used to determine the state of the system

(part b). For it, the degree of membership μi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m for each crisp value

of the state variables is determined and all degrees are combined by calculating the product (part

c) resulting in μi, 1 ≤ i ≤ n. Furthermore, the result of each consequent is calculated. In our

example, we assume a fixed base flow QB . The precipitation time series is convolved with a

previously determined unit hydrograph, scaled by factor p and added to QB . The overall result

Qt is a linear combination of the degree of fulfillment of each rule and the individual consequent

results Qi,t, 1 ≤ i ≤ t (part d).

Of course, this approach is extremely simplified. Processes like snowfall or snowmelt are not

included. Nevertheless, it showed promising results like shown in Casper et al. [2007]. In design-

ing such a model, one question arises: which configuration of state variables results in the most

efficient models? Only soil moisture time series or accumulated precipitation or a combination of

both of them? If n different time series are observed within a catchment, 2n − 1 different state

variable configurations can be used as there are 2n different subsets.

Optimizing fuzzy models can be subdivided into two different parts: the definition of the structure

and identification of parameters. The latter one can automatically be solved data-driven in an

optimal way (concerning root mean square deviation, Gemmar et al. [2006]). For the first step, the

definition of the structure, expert knowledge is required (e.g. Cox [1994]). Once the state variables

have been identified, different approaches can be applied to optimize structure like shown by

Vernieuwe et al. [2003]. In our former models, state variables have been identified using expert

knowledge resulting in a large set of rules (Casper et al. [2007]). In the following, we will present

an alternative method.
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Figure 1: Possible structure of a rainfall-runoff fuzzy model of Takagi-Sugeno-type

3 TIME SERIES KNOWLEDGE MINING

The purpose of the method Time Series Knowledge Mining (TSKM) as proposed by Mörchen

[2006] is to extract temporal knowledge from multivariate time series: Using TSKM, patterns can

be found that help to understand the underlying process and therefore allow modeling this pro-

cess easier. The patterns are described using Time Series Knowledge Representation (TSKR), a

hierarchically structured pattern language. The constructs of TSKR are named using terms from

musicology, as these terms describe the underlying temporal concept vividly: Tones represent the

concept of duration, overlapping parts of Tones, the Chords, stand for coincidence and partial

order of Chords is represented by Phrases. The patterns found by TSKM are new, useful, under-

standable to humans, more compact and more abstract than the original time series. The discovery

of TSKR patterns using TSKM is an interactive and iterative process consisting of five steps: pre-

processing, defining Aspects, finding Tones, finding Chords and finding Phrases (Figure 2).

The goal of the first step, the pre-processing, is to remove systematic and random errors like noise,

outliers, drift etc. As this is a problem regularly occurring in knowledge mining with plenty of

different available approaches, there is no need for introducing new methods. Furthermore, the

choice of the most suitable method to remove errors is highly application dependent and thus

Mörchen [2006] does not suggest specific methods. A suitable well-known method can be chosen

after examining the specific characteristics of a time series and the included errors.

In the second step, the dimensionality of the d-dimensional input space is reduced by grouping

the multivariate time series to semantic blocks by selecting k subsets of the dimensions [1, . . . , d].
These subsets are called Aspects. A descriptive, unique label is assigned to each Aspect allow-

ing for an intuitive interpretation. Multivariate Aspects can profit from further processing like

reducing the dimensionality by using e.g. PCA or calculating other derived time series.

Afterwards, in the third step, Tones are mined, representing the persistent occurrence of a state.

Each Tone pattern contains a unique symbol, a descriptive label allowing for easy interpretation

and a characteristic function indicating the occurrence of a state in an Aspect on a given time

interval. The definition of the characteristic function is not restricted; various different types are

possible, e.g. value-based functions, trend-based, shape-based etc. Using this characteristic func-

tion, the numerical Aspect is transformed into a symbolic interval series indicating the occurrence

of Tones at each time point. Usually, this symbolic interval series will often be shortly interrupted

e.g. due to noise. These gaps will split the potentially longer interval into two parts. To remove the

gaps, a filter can be applied resulting in a symbolic time interval series of marginally interrupted
1815
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Figure 2: The five steps of Time Series Knowledge Mining (modified from Mörchen [2006])

occurrences. The filter can be parameterized by defining the maximum absolute length of a single

gap and the amount of all gaps to be filled to the complete length of the time series. Finally, short

Tones can be filtered, too.

Chord patterns also consist of a unique symbol, a label and a characteristic function indicating the

simultaneous occurrence of Tones. A partial order is defined to allow for sub- and super-Chord

relations between Chords. E.g. the Chord D consisting of Tones a and b is a sub-Chord of the

Chord E consisting of Tones a, b and c - E is super-Chord of D. The hierarchy resulting from this

relations can be visualized in a diagram and can be useful as we will see in section 4. To allow

for tolerance concerning small differences of the support, margin-closed Chords are defined with

respect to a threshold α indicating the allowed deviation of the ratio of the compared supports.

Hence, the algorithm to mine Chords uses the following parameters: a threshold for the minimum

duration of a Chord, the minimum and maximum size of a Chord and the threshold α for mining

margin-closed Chords.

Finally, Phrases are mined. A Phrase pattern consists of a unique symbol, a descriptive label and

a characteristic function indicating the subsequent occurrence of Chords according to a partial

order on a given time interval. Again, a partial order is defined to allow for sub- and super-Phrase

relations. The algorithm to mine Phrases uses the following parameters (extract): the minimum

support of a Phrase and the minimum length of the paths in a Phrase.

4 APPLICATION OF TIME SERIES KNOWLEDGE MINING

In the following, the application of TSKM with data from a 7 km2 catchment in the Northern Black

Forest in Germany is described. The data contains various time series representing discharge,

precipitation, air and soil temperature, soil moisture, radiation etc. in 1 h samples covering 2

years. Within this period, an extreme flood with a return period of 150 years was captured. The

data has been examined thoroughly in different studies before (e.g. Casper [2002]).

To allow for unique and compact notation, the following nomenclature is used: Numeric, uni-

variate time series are represented by vectors. E.g. �n denotes a vector containing precipitation

measurements. vt describes the tth discrete sample of �v corresponding to time point t. The con-

volution of two vectors �a and�b is denoted by �a ∗�b.
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4.1 Pre-Processing

Although the database containing the different time series stores a quality flag for each value, some

errors like outliers, drift or noise do remain. To identify and - if possible - to remove those errors,

different techniques were applied. The effectiveness of the methods differed for the different

physical values. For the soil moisture time series, outliers were identified reliably by applying the

2-sigma rule, indicating a value as an outlier if the difference to the mean value of the time series

is bigger than the standard deviation times two (e.g. Runkler [2000]). For the runoff time series,

this method failed as it indicates rare flood peaks as outliers. Another method is to plot the time

series in a suitable way and use the human eye for outlier detection. For all time series, single

outliers were replaced by linear interpolation of neighboring values. For some soil moisture time

series, drift effects were visible, possibly due to changes in the soil matrix surrounding the TDR

probes caused by water or animals. This was identified comparing the absolute values of different

obviously saturated situations. Usually, these values will increase. Filters to remove noise were

not applied, as tolerant algorithms are used in the following steps of TSKM.

4.2 Defining Aspects

For the following processing steps, time series representing discharge, precipitation, air tempera-

ture and soil moisture were selected from the available hydrometeorological data. The time series

containing discharge measurements of the catchment’s main outlet was used as Aspect discharge.

The two available precipitation time series measured at two different sites within the catchment

were combined by calculating the mean values element-by-element and used as Aspect precipi-
tation 1 h. As the air temperature was measured at the same two sites, the two time series were

combined similarly and used as Aspect temperature. Soil moisture was measured at four different

sites in different depths resulting in 18 different time series. For each of the four sites, one probe

was selected manually by an expert. As most of the probes of one site showed similar behavior,

the probe showing least noise and drift was selected. Furthermore, the selected probe has to rep-

resent the typical behavior of the site from a hydrologic point of view. Thus, four Aspects were

defined: soil moisture 1 to soil moisture 4.

Besides those 7 Aspects, new Aspects were defined using derived times series. The precipitation

time series contains samples representing the accumulated precipitation during one hour. Usually,

those values will differ in consecutive samples resulting in a time series without persistent val-

ues. Even in periods with plenty of precipitation, the single samples can strongly vary. Hence,

searching for persistent states within this time series will fail. Then again, the amount of precip-

itation within a certain time appears to be a good state variable as the system’s state will change

with the amount of precipitation. Unfortunately, the most appropriate duration of such a period

is unknown. Regarding all these assumptions, new Aspects were derived to estimate the optimal

size and to damp the high frequency properties. New Aspects precipitation 2 h, precipitation
4 h, precipitation 8 h, precipitation 16 h . . . precipitation 128 h were derived by convolving the

original time series: e.g. precipitation 2 h is �n ∗ (1 1)T , precipitation 4 h is �n ∗ (1 1 1 1)T etc.

In the premises of the fuzzy system, the amount of precipitation resulting in discharge is scaled

depending on the system state. This parameter, which might be compared to the runoff coefficient

of the corresponding time point, is not yet incorporated in the previously defined Aspects. The

exclusive usage of the amount of discharge is not adequate as a great amount of discharge resulting

from a great amount of precipitation does not indicate a critical system state. On the other hand,

flood waters resulting from a small amount of precipitation only occur in critical system states.

Thus, a time series containing the runoff coefficient of each hour would be beneficial, but is not

available. To approximate a comparable time series, the system approach of the fuzzy system is

used in a modified version. Besides the amount of precipitation resulting in discharge, the constant

base flow is scaled by the same factor:

Qt = QB + QB · pt + pt · Ft, (1)

where �F = �n ∗ �uh. This approach can be transformed as follows:
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pt =
Qt −QB

Ft
. (2)

Using this approach, a time series containing the continuous values of pt can be calculated. For

the application of TSKM to determine state variables, this time series is useful as it indicates the

proper value of pt in each time step. In the following, this time series is used as Aspect discharge
disposition.

4.3 Finding Tones

In the third step of TSKM, Tones are mined. Each Tone represents a persistent symbolic state of

an Aspect. As described in section 3, various different types of characteristic functions can be

defined indicating the occurrence of a Tone in a certain time interval. In the premises of fuzzy

systems, the value of a sample is used to determine the degree of membership for each fuzzy set.

Thus, value-based characteristic functions are defined for the 15 Aspects described in section 4.2.

For each of the different
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Figure 3: Transforming the numerical soil moisture time series

to value-based Tones

precipitation Aspects, three

Tones were defined with

labels little, medium and

plenty to allow for an in-

tuitive interpretation. The

bin for each Tone has been

determined manually in a

way resulting in many Tones

of type little, a couple of

type medium and few of type

plenty. The Aspect dis-
charge has been subdivided

into three bins similarly with

labels low, medium and high.

For temperature, only two

Tones cold and warm were

defined using the freezing

point as threshold. The

range of discharge disposi-
tion has been subdivided into

5 equidistant bins to allow

for a more detailed resolution. To determine suitable bins for the soil moisture Aspects, the

PERSIST algorithm has been used (Mörchen and Ultsch [2005]), which performs discretization

observing the temporal order of samples. The algorithm produces bins that are similar to bins

defined manually by an expert but result in fewer and more persistent occurrences of Tones. Un-

fortunately, this algorithm did not produce reasonable bins for the other Aspects. An example of

descretization for Aspect soil moisture 1 (site Forsthaus, depth 35cm) is shown in figure 3.

The symbolic interval series of Tones shown at the bottom of figure 3 in red, green and blue still

contains many short Tones, e.g. at t ≈ 550 and t ≈ 700. These short Tones may be due to noise

and do not represent a separated symbolic state and should be removed as a large set of short Tones

will result in a huge set of Chords. Thus, this symbolic interval series is filtered resulting in a set

of marginally interrupted occurrences. The first parameter of the filter, the maximum absolute

length of any interruption, has been determined using the value of time to peak of the catchment.

The second parameter, the maximum relative total length of all interruptions, has been limited to

10 %. The result of filter application is shown in figure 4 in the middle. As a last step, remaining

short Tones are removed as shown at the bottom.
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4.4 Finding Chords

In the next step, Chords are mined in the symbolic interval sequence containing Tones from the

previous step. The algorithm that mines Chords uses different parameters. The first two param-

eters limit the size of a Chord. A Chord should at least consist of three Tones: besides Tones of

Aspect discharge or discharge disposition, two further Tones should be contained as at least two

time series should be used to represent system state accurately. The maximum size of a Chord

is limited by the number of Aspects, that is to say 15. Again, the value of time to peak has been

used to limit the minimum duration of a Chord. The threshold that limits the maximum deviation

of support is 10 %. The flag whether to mine closed Chords has been set to false as the hierarchy

of sub- and super-Chords will be used later to reduce the number of state variables. Using theses

parameters, 2492 Chords were found.

4.5 Finding Phrases

To identify state variables, Chords are useful as they represent the simultaneous occurrence of

Tones. For this procedure, Phrases are not necessary. However, they can be used to identify

hydrologic processes like snowfall and melt within the multivariate time series.

For it, the set of Aspects has been reduced to discharge,

Figure 4: Filtering the symbolic in-

terval series of Tones: value-based

Tones at the top, marginally inter-

rupted occurrences in the middle

and after filtering short Tones at the

bottom

precipitation, temperature and discharge disposition. The

set of symbolic interval sequences for those Aspects has

been reused without modifications. From the resulting

set of Chords, specific ones were labeled manually: e.g.

the Chord consisting of Tones discharge is low, tempera-
ture is low and precipitation is medium has been labeled

potential snowfall. Using these Chords, Phrases were

mined that indicate the different sequences of snowfall

and following flood waters without precipitation; snow-

fall, a break were nothing happens (cold, no precipita-

tion, low discharge) and subsequent flood water; snowfall

and following precipitation during snowmelt etc. Those

Phrases and especially the interval series indicating their

occurrence are helpful in identifying flood waters influ-

enced by snow as they are not included in our approach

yet.

4.6 From Chord to state variable

There is one critical point in the usage of TSKM to identify state variables: The occurrence of

Chords does not imply that the included time series are adequate state variables; Chords state that

the Tones of which they are made up occur simultaneously. Thus, the applicability of the included

time series to represent system state has to be derived manually. For this, we propose the following

approach: The set of Chords should not be limited by any parameter in the first four steps even if

a huge set of Chords is produced. From this set of Chords, all Chords are automatically discarded

that do not contain the Tone discharge disposition is extreme resulting in a small set of Chords

that can be inspected manually. These Chords and their hierarchy are inspected manually by

an expert and a Chord is selected that contains promising potential state variables besides the

discharge disposition. Again, the initial huge set of Chords is inspected discarding automatically

all Chords that are not made up of the discharge disposition and the identified potential state

variables. The remaining set of Chords is again inspected manually by an expert. If the Chords

cover the complete range of system states and low Tones of potential state variables coincide with

low discharge disposition and high Tones of potential state variables coincide with high discharge
disposition, the potential state variables can be used to generate a fuzzy model. If this fuzzy model

shows poor results or if the set of Chords remaining after the last step contains conflicting Chords,

the search has to be performed again, selecting different potential state variables.
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5 RESULTS AND OUTLOOK

The set of possible state variable configurations resulting from the 15 Aspects defined in section

4.2 contains 32, 767 different configurations. From this large set, two soil moisture time series

were identified as applicable state variables using TSKM and the approach described in section

4.6. The Nash-Sutcliffe efficiency of the generated fuzzy models using these two state variables

is 0.38. During the identification, an expert assisted the knowledge mining process but no fur-

ther explicit expert knowledge was used. In former approaches, the state variables were selected

manually by an expert (Casper et al. [2007]). The Nash-Sutcliffe efficiency of the resulting model

was −0.25. The expert knowledge was gathered during several years of intensive work within the

catchment and two additional years of modeling. Comparing the two different approaches, the

application of TSKM enhances the model’s efficiency significantly. Furthermore, the amount of

time that needs to be spent in gathering knowledge is decreased considerably.

The efficiencies mentioned above seam to be low compared to other rainfall-runoff models of

other catchments but the small test catchment in the Black Forest shows extreme dynamics which

complicates modeling. Additionally, the approach used in the fuzzy model does not yet include

snowfall and snowmelt.

Up to now, TSKM has only been used with data of a single, small catchment. For evaluation

purposes, the application of TSKM in other catchments is necessary. This evaluation includes the

influence of parameters used in the different steps of TSKM, their general applicability and the

approach to extract state variables from a set of Chords.

TSKM allows for mining temporal patterns within multivariate time series automatically. The

interpretation of these patterns to identify state variables is a manual step. Thus, a huge set of

possible state variable configurations can be mined but the identified state variables configuration

is not necessarily the most efficient one.
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modelling using soil moisture measurements to represent system state. Hydrological Sciences
Journal, 52(3):478–490, 2007.

Cox, E. The Fuzzy Systems Handbook. Academic Press, Inc., 1994.
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