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A Local-Search Approach for Solving a

Bin-Packing Problem with Secondary Objectives

Sebastian Niemann ∗ Heinz Schmitz ∗

Abstract. This paper reports on a bin-packing
problem that appears during the production pro-
cess of wooden door frames. For this, slats are sawn
out of standard-sized wood panels and the main ob-
jective is to minimize the number of used panels.
However, in the case at hand two more objectives
need to be considered: The ordering of slats with
the same width is crucial for machine-setup costs
and final-assembly costs in forthcoming stages of
the production process.

After a precise problem statement we present
local-search based algorithms that minimize the sec-
ondary objectives without increasing the number of
panels. It turns out that a selective neighborhood
search is an efficient but yet effective way to achieve
this. Together with a standard algorithm for bin
packing (FFD), our algorithms are implemented as
a software module that computes optimized pro-
duction schedules. Tests with real-world data show
significant improvements – in comparison to a com-
mercial optimization tool that has been used before.

Keywords: combinatorial optimization, bin pack-
ing with secondary objectives, industrial applica-
tion, local search, 1-dimensional SSSCSP.

1 Introduction

In this paper we present algorithms to solve the
problem of generating production schedules for a
large factory that produces wooden door frames. A
door frame is the fixed part of a door that holds the
locking plate and covers the wall, see Fig. 1. Such a
frame consists of three slats of equal width that in
turn depends on the thickness of the wall. In each
of the three stages of the main production process
a certain optimization goal has to be considered.

Stage 1. Here slats from different customer or-
ders are grouped together according to the type
of wood. For each such group slats are sawn out
of standard-sized wood panels. This is a one-
dimensional cutting process. Since it is not always
possible to allocate the slats in a way such that each
panel is completely utilized there will typically be
some cut-off left on each panel which then has to
be chipped by the saw. Fig. 2 shows a stack of pan-
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Figure 1: Schematic illustration of a door.

els before and after the cutting process in the first
stage. The natural first objective is to minimize the
number of panels.

Stage 2. In the second stage the slats are seri-
alized and handled one by one to finish them, see
again Fig. 2. They are reamed to size and a flute is
implemented to add a cover. The machine that car-
ries out this step has to be changed over every time
the width of consecutive slats changes. In such a
case fixed and variable setup times occur, the latter
depending on the quantity of the width difference.
As a second objective we identify the minimization
of setup times for this second stage.

Stage 3. Here the door frames are assembled.
As depicted in Fig. 1 three slats of equal width are
required for each frame. To do so, it is favorable to
have multiples of three slats of equal width close to-
gether. If this is not the case an employee has to sort
the slats manually which is very time-consuming.
The third objective taken into account is the min-
imization of (estimated) sorting times in the final
assembly.

A schedule is completely determined by the dis-
tribution of slats to panels in the first stage. The
ordering of slats is the same during the whole pro-
cess (excpect for inversion) because no sorting is
possible while moving stacks of sawn panels. So all
values of the objective functions are already known
when the distribution of slats to panels is assigned.
While the second and third objectives are similar
(but not equal), they are competing with the first
one.
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Figure 2: Three-stage production process of door
frames.

As is typical for real-world problems some ad-
ditional technical characteristics have to be consid-
ered. For example each panel has to be straightened
before the slats are sawn which reduces the panel
width by an edge crop width. Furthermore, even
when sawing single slats some cut-off is produced
(crop width). These widths depend on the type of
wood so they are part of the input data for each
instance.

There are two reasons why the first objective
dominates the others: On one hand various ma-
chine characteristics make the production process
much more complicated when too much panels are
used (hence a lot of cut-off is produced). On the
other hand raw panels are expensive compared to
the machine and assembly costs in the forthcom-
ing stages. Consequentially, we can characterize the
problem as being of type Lex(z1, Fl(z2, z3)) where
zi is the objective of stage i and Fl is a weighted
linear function (for notations see, e.g., [9, p.110]).

After a precise problem statement, we propose a
combination of FFD and a subsequent local-search
variant to solve it. It turns out that our approach
is a conceptually easy, but yet efficient and effec-
tive way to outperform the formerly used single-
objective commercial optimizer (and to make man-
ual post-optimization obsolete). As a result, this
commercial tool has been replaced by our optimiza-
tion module.

Related Work. While single-criteria cutting
stock problems were among the first to be stud-
ied in operations research, more and more multicri-
teria variants have been considered since the mid-
eighties. Several additional objectives have been
taken into account, e.g., the minimization of the
total number of different cutting patterns [6, 10, 5]
and the heterogeneousness of the used patterns [4].

Furthermore, secondary objectives for bin packing
problems have been studied , e.g., balancing the
load of each bin [8]. Besides one-dimensional prob-
lems also two-dimensional variants of cutting and
bin-packing problems are discussed in the literature,
see e.g. [7].

The problem at hand can be classified by consid-
ering the improved typology of cutting and packing
problems [11]. Here, problems are mainly charac-
terized by five criteria in three steps (basic, interme-
diate and refined problem types). Considering only
the main objective of minimizing material usage
our problem can be characterized as a CSP (basic
type) with several identical large objects (interme-
diate type) and one dimension (refined type). This
leads to a 1-dimensional Single Stock Size Cutting
Stock Problem (1-dimensional SSSCSP). However,
problems with multiple objectives are handled as
variants in the typology.

2 Problem Statement

We formally define the present optimization prob-
lem as follows. An instance x = (m,S, P )
consists of a list of m slats S = (w1, . . . , wm)
where wi ∈ N defines the width of slat i, and
a list of parameters P . The parameter tupel
P = (pw, cw, ecw,maxparts, as, fst , st, α2, α3) has
the following meaning:

pw panel width
cw crop width
ecw edge crop width

maxparts maximum number of parts per panel
as adjustment speed (second stage)
fst f ix setup time (second stage)
st sorting time (third stage)
α2 weight for second objective
α3 weight for third objective

A solution for x is a cutting plan p = (l1, . . . , lk)
with k layouts where each layout li = (w′i1, . . . , w

′
iqi

)
with widths w′ij ∈ N defines a cutting pattern.

For an easy notation of constraints and objectives
let

(w′11, w
′
12, . . . , w

′
1q1
, . . . , w′k1, . . . , w

′
kqk

)

= (b1, b2, . . . , bm)

= I(p)

be the list of slat widths in processing sequence.
Feasible solutions have to satisfy several con-
straints. First of all the panel width given by the
parameters must not be exceeded. Of course we
have to take the (edge) crop widths into account
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when calculating the used panel width, so we have

∀1 ≤ i ≤ k : qi∑
j=1

w′ij + (qi − 1) ∗ cw + 2 ∗ ecw

 ≤ pw (1)

where qi is the number of slats on panel i. As
a second constraint this number of slats must be
bounded above by the parameter maxparts for each
layout, i.e.

∀1 ≤ i ≤ k : qi ≤ maxparts. (2)

As no overproduction is allowed, each slat must be
scheduled exactly once, that is

∀1 ≤ i ≤ m :
|{j | wj = wi}| = |{j | bj = wi}| (3)

k∑
i=1

qk = m. (4)

A production plan is valid (or executable) iff (1) -
(4) hold.

As a first objective we consider the minimization
of the number of panels (or layouts) used in p, so
we have

z1(p) = k.

The second objective measures the sequence depen-
dent setup times in the second production stage.
As described in Sec. 1 there are fixed and variable
times. For the variable proportion we sum up the
consecutive absolute width differences and divide
them by the adjustment speed of the relevant ma-
chine, i.e.

z21(p) =

(
m−1∑
i=1

|bi+1 − bi|

)
/as.

The fixed setup time is determined by counting the
number of width changes and is therefore defined
by

z22(p) =

(
m−1∑
i=1

d(bi+1, bi)

)
∗ fst

whereas

d(x, y) =
{

1 if x 6= y
0 else.

So the overall setup time in the second stage is

z2(p) = z21(p) + z22(p).

To calculate the third objective we count non-
grouped slats. Let grp(p) be the number of disjoint
terns of equal width in p, then

z3(p) = (m− 3 ∗ grp(p)) ∗ st

is the sorting time during final assembly.
Now the task is to find among all valid produc-

tion plans p with minimal z1(p) a plan where also

Fl(z2, z3) = α2 ∗z2 +α3 ∗z3 is minimal. It is easy to
see that calculating an optimal solution for the first
objective is equivalent to finding an optimal solu-
tion for the classical bin-packing problem where m
objects with sizes ai (slat widths wi) and a maxi-
mum size B (here pw) for each bin are given. The
NP-hardness for bin packing carries over to the
present multi-objective variant ([9, p.113]).

3 Algorithm Design

The different priorities of our objectives motivate
an approach with subsequent optimization steps. In
the first step we optimize z1 by adapting a standard
bin-packing approximation algorithm. In the sec-
ond and third step we try to minimize Fl(z2, z3) us-
ing two different strategies that maintain the num-
ber of used panels.

3.1 Step One: Panel Optimization

We ignore the secondary objectives and calculate a
solution that uses a small number of panels. As this
subproblem is equivalent to the bin-packing prob-
lem we are able to choose from a variety of exact,
heuristic and approximation algorithms, e.g. [2],
[1]. Algorithm 1 shows an implementation of First
Fit Decreasing (FFD) as one such possibility. Slats
are sorted in descending order and then allocated
one after another on the first panel with sufficient
space left.

Algorithm 1: FFD(x)
Input : instance x = (m,S, P )
Output : solution p = (l1, l2, . . . , lk)

begin
sort wi in descending order resulting in
(w̃1, w̃2, . . . , w̃m);
k := 0;
p := ();
for i := 1 to m do

if w̃i cannot be placed on any panel
then

k := k + 1;
lk := ();
p := (l1, l2, . . . , lk−1, lk);

j := first index of a panel w̃i can be
placed on;
lj :=(w′j1, w

′
j2, . . . , w

′
jqj
, w̃i);

return p
end

When searching a panel for w̃i we check the con-
straints described in Section 2, i.e., only panels j
with sufficient space (1) and qj < maxparts (2) are
selected. Since each slat is considered exactly once
in the for-loop also (3) and (4) hold. So the plan
generated by FFD is always valid. It is known that
this O(n log n)-algorithm guarantees a performance
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ratio of at most 22%, more precisely, it holds for all
x that FFD(x) ≤ 11/9 ∗ OPT(x) + 6/9, see [3]. Ex-
perimental results with our test data show that the
performance ratio is usually a lot better, even the
optimum is achieved quiet often. We take this to
justify the decision to implement FFD for the present
problem.

3.2 Step Two: Single-Slat Optimiza-
tion

The idea to improve the additional objective
Fl(z2, z3) is to determine slats with the highest po-
tential for improvement. However, there are differ-
ent possibilities to determine such positions. Sev-
eral tests indicate that a greedy approach works out
best that chooses the slat adding the highest cost
fraction to Fl(z2, z3). Algorithm getImpPos calcu-
lates such a position. The function inGroup(p, i)
returns 1 iff slat i is located in a group counted
by grp(p). Moreover, only unmarked positions
are returned (the following local-search algorithm
Alg. 3 marks positions that could not be further
improved).

Algorithm 2: getImpPos(x, p)
Input : instance x = (m,S, P ), solution

p = (l1, l2, . . . , lk)
Output : position pos of a slat that mostly

contributes to Fl(z2, z3)

begin
max := 0;
pos := −1;
for i:=2 to m− 1 do

z21 := (|bi−1 − bi|+ |bi − bi+1|) /as;
z22 := (d(bi−1, bi) + d(bi, bi+1)) ∗ fst ;
z2 := z21 + z22;
z3 := (1− inGroup(p, i)) ∗ st;
if Fl(z2, z3) > max ∧ i unmarked then

max := Fl(z2, z3);
pos := i;

return pos
end

Next we try to reduce the costs of a plan by ex-
ploring the neighbors of the slats determined by
getImpPos. When looking at test data it turned out
that the combined use of two neighborhood func-
tions is a good idea also in this case. Let p such that
I(p) = (b1, . . . , bi, . . . , bj , . . . , bm). The first neigh-
borhood is the exchange neighborhood

N1(p, i) = {exchg(p, i, j) | 1 ≤ j ≤ m}

where exchg(p, i, j) = p′ such that I(p′) =
(b1, . . . , bj , . . . , bi, . . . , bm). For a second neighbor-
hood we move a slat from position i to position
j, i.e., let move(p, i, j) = p′ such that I(p′) =
(b1, . . . , bi−1, bi+1, . . . , bj , bi, bj+1, . . . , bm), and

N2(p, i) = {move(p, i, j) | 1 ≤ j ≤ m}.

The following algorithm intensifies the search in
the direction of the subsequently calculated posi-
tions getImpPos in a way we call selective neigh-
borhood search (SNS). It exhaustively evaluates the
neighborhoods N1(p, pos) and N2(p, pos) for pos =
getImpPos(x, p) with the first-improvement strat-
egy until no more improvements are possible. We
mark positions to avoid selecting them twice.

Algorithm 3: SNS:SSO(x, p)
Input : instance x = (m,S, P ), solution

p = (l1, l2, . . . , lk)
Output : improved solution

p = (l′1, l
′
2, . . . , l

′
k)

begin
repeat

pos :=getImpPos(x, p);
foreach p′ ∈ N1(p, pos) ∪N2(p, pos) do

if Fl(z2(p′), z3(p′)) <
Fl(z2(p), z3(p)) ∧ z1(p′) ≤ z1(p)
then

p := p′;
break;

if ¬ improvement found then
mark pos;

else
remove all marks;

until all positions are marked ;
return p

end

Call p locally optimal w.r.t Fl(z2(·), z3(·))
and a neighborhood N iff Fl(z2(p), z3(p)) ≤
Fl(z2(p′), z3(p′)) for all p′ ∈ N (p, i) and 1 ≤ i ≤ m.
So the result of Algorithm SNS:SSO is locally op-
timal with respect to N1 ∪ N2. Note that by the
choice of pos we look at such neighborhoods first,
where we expect significant improvements. This ac-
celerates the search towards the local optimum and
makes it a very efficient procedure. Nonetheless,
further improvements may be possible since N1 and
N2 only consider moves and swaps of single slats.

Since in Algorithm 3 the neighborhood search
is aborted as soon as an improvement is found,
in an efficient implementation neighbors with the
most room for improvement should be evaluated
first. This can, for example, be done by calculating
prefered swap and move positions for slats at posi-
tion pos and evaluating the corresponding neighbors
first.

3.3 Step Three: Slat-Group Opti-
mization

To further improve Fl(z2, z3) we now con-
sider groups of equal-sized slats. Let p such
that I(p) = (b1, . . . , bi, . . . , bi+r, . . . , bj , . . . , bm)
with bi−1 6= bi, bi = bi+d for all 1 ≤ d ≤ r
and bi+r 6= bi+r+1. Then we define
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moveG(p, i, j) = p′ such that I(p′) =
(b1, . . . , bi−1, bi+r+1, . . . , bj , bi, . . . , bi+r, . . . , bm)
and

N3(p, i) = {moveG(p, i, j) | 1 ≤ j ≤ m}.

The next algorithm moves groups of slats by evalu-
ating N3 for every group in p. An auxiliary function
getGroupPos(x, p, pos) returns the starting index of
the first group of equal-sized slats that is greater
than pos, and −1 if no such index exists.

Algorithm 4: SNS:GSO(x, p)
Input : instance x = (m,S, P ), solution

p = (l1, l2, . . . , lk)
Output : improved solution

p = (l′1, l
′
2, . . . , l

′
k)

begin
pos := getGroupPos(x, p, 0);
while pos 6= −1 do

foreach p′ ∈ N3(p, pos) do
if Fl(z2(p′), z3(p′)) <
Fl(z2(p), z3(p)) ∧ z1(p′) ≤ z1(p)
then

p := p′;
pos := 0;
break;

pos := getGroupPos(x, p, pos);
return p

end

Again, this algorithm does not terminate as
long as improvements are possible. As a conse-
quence, the resulting plan p is locally optimal
w.r.t. N3. This is final result of the overall
computation.

4 Experimental Results

In order to assess our approach, also for large-scaled
real-world instances, we compare the results pro-
duced by FFD/SNS with plans previously put in
practice by the production-line manager. Except
for a few special cases, these plans were calculated
by a commercial optimizer (CO) specilized on the
primary objective z1. However, this software could
not cope with the secondary objectives that are spe-
cific for the present problem.

Table 1 compares results for some typical real-
world instances. To calculate the criteria values an
adjustment speed of as = 20, a fix setup time of
fst = 10 and a sorting time of st = 5 have been
used. Furthermore, realistic weights of α2 = 0.7
and α3 = 0.3 were assumed.

It turns out that the plans generated by our
FFD/SNS-combination yield better objective values
in almost all cases. Typically, the number of used
panels remains unchanged while the values for the
secondary objectives are improved by up to 50% in
comparison to the CO. In few cases, we even ob-
tained a smaller number of panels. It should be

ID Criterion CO FFD/SNS Imp.

67888
m = 86

z1 23 23 0%
z2 287 196 32%
z3 115 55 52%

Fl(z2, z3) 247 154 38%

67896
m = 122

z1 37 37 0%
z2 1086 652 40%
z3 235 190 19%

Fl(z2, z3) 831 513 38%

67932
m = 252

z1 67 66 1%
z2 1732 1342 23%
z3 225 285 -27%

Fl(z2, z3) 1280 1025 20%

67924
m = 265

z1 44 44 0%
z2 1184 918 22%
z3 290 155 47%

Fl(z2, z3) 916 689 25%

Table 1: Comparison of real-world instances. The cri-
teria values could be improved in almost all cases.

mentioned that all computations were carried out
in a few seconds on a standard personal computer.

To emphasize the impact of the SNS-algorithm
Fig. 3 shows the objective value for Fl(z2, z3) before
and after the selective neighborhood search for a
larger set of real-world instances. It can be observed
that the value for Fl was improved in all considered
instances, often up to 50%.

Figure 3: Comparison of criteria values before and
after optimization with SNS.

5 Conclusions

We propose a combination of FFD and a subse-
quent local-search variant to solve a real-world bin-
packing problem with secondary objectives that
arises during the production process of wooden
door frames. Not surprisingly, a commercial op-
timizer specialized only on the primary objective
could not cope with the problem-specific secondary
objectives. It turns out that our approach is a con-
ceptually easy, but yet efficient and effective way to
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outperform such an optimizer (and to make manual
post-optimization obsolete). As a result, the com-
mercial tool has been replaced by our optimization
module.

Future Work. It would be interesting to investi-
gate possible performance improvements of our ap-
proach by using additional neighborhood functions.
Instead of moving single slats only (or single groups
of equal-sized slats) one could try to implement a
heap to swap out several slats simultaneously and
then search for better positions regarding all slats
in the heap. Another extension is motivated by
the second production line in the factory. Because
of logistic constraints for this line only specific cut-
ting patterns (layouts) may be scheduled. Since this
problem is fundamentally different from the one de-
scribed in this paper we are currently working on
an adequate algorithm to generate plans for this
production line.
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