
F

Informatik-Bericht Nr. 2007-4

Schriftenreihe Fachbereich Informatik, Fachhochschule Trier

First Come, First Served – Tour Scheduling
with Priorities

Heinz Schmitz and Sebastian Niemann

Fachhochschule Trier, Department of Computer Science,
Schneidershof, D–54293 Trier, Germany

Abstract. This paper introduces a bicriteria version of the classical
Traveling Salesman Problem (TSP) which is motivated by various appli-
cations in the context of service delivery. The additional objective allows
to take priorities among locations into account while minimizing the costs
of traveling. For this, cities in the input are given in a strict ordering,
e.g., due to arrivial times of delivery requests.
After making the notion of priorities precise, we present a local-search
algorithm to approximate the set of non-dominated solutions. While still
being conceptionally easy, our algorithm employs different means of in-
tensification and diversification in a way we call breadth-first local search.
We maintain one candidate solution for each possible value of the addi-
tional objective in a polynomially-sized archive, and try to improve this
set towards the Pareto front. Experimental results with test data from
TSPLIB show that this is a reasonable approach to attack the problem.

Keywords. Multi-objective discrete optimization, bicriteria traveling
salesman problem, local search, metaheuristic.

1 Introduction

The classical Traveling Salesman Problem (TSP) has numerous real-world appli-
cations, for a recent overview we refer to [1]. A typical one is the minimum-cost
tour scheduling to fulfill delivery requests from different locations.

Example 1. Let {1, . . . ,m} be a set of customer locations such that the earliest
request is from location 1, the second earliest from 2 and so on. Obviously,
minimizing traveling costs is a reasonable objective for the shipping company.
However, if delivery time is crucial, then the tour (m,m − 1, . . . , 1) cannot be
considered optimal from a customers perspective since requests are fulfilled in
reverse order.

One way around this is to incorporate the first-come-first-served -policy. If
locations have priorities according to arrivial times of delivery requests one can
additionally try to maintain this ordering while minimizing traveling costs. Ob-
viously, both objectives are conflicting in general. Due to the many applications
of TSP there are also other settings where the new objective emerges in a natural
way. We have encountered the following situation in a real-world project, where
we used the approach presented in this paper.

Example 2. The manager of a single-machine production line wants to schedule
tasks such that the overall makespan is minimized. Since there are sequence-
dependent setup times this is equivalent to solving TSP instances. On the other
hand, there also needs to be achieved some level of service for different sales
departments that place orders. To avoid lengthy discussions about what jobs
are more important than others, all participants agreed on the first-come-first-
served -policy. So in fact, the production-line manager needs to solve TSP in-
stances with priorities, i.e., trade-offs between both objectives have to be bal-
anced.

Once priorities are considered in general, they can also be used to implement
other preferences, e.g., due to some customer-specific or order-specific properties.

Our Contribution. Motivated by the above examples we give a formal
definition of the Traveling Salesman Problem with Priorities (TSPwP) which is
a straightforward and natural extension of classical TSP (Section 2). We observe
some easy facts about this bicriteria problem.

Next we design a local-search algorithm called breadth-first local search that
combines the two typical means of heuristic search, i.e., intensification and di-
versification, in a novel way (Section 3). To intensify the search we explore the
neighborhood of an ordered archive of candidate solutions using different neigh-
borhood structures and a variable search-depth (Section 3.1). The polynomially-
sized archive is such that it keeps one candidate solution for each possible value
of the additional objective. A well-balanced amount of diversification is achieved
using tabu lists together with a random choice between two problem-specific
perturbation operators (Section 3.2). Experimental results suggest that this is a
promising approach to solve TSPwP (Section 4).

Additionally, our algorithm can be seen as an implementation of a more ab-
stract algorithmic pattern that can be used to solve similar bicriteria problems,
namely problems where the range of at least one objective function is polyno-
mially bounded in the input size.

Related Work. Our algorithmic approach is in the same line with other
recently published variants of local search, such as Pareto Local Search [2] and
Pareto Iterated Local Search [3], but it also differs in a number of aspects. On
one hand we also incorporate perturbation operators [4], we make use of multiple
neighborhood structures [5], and we keep an archive of candidate solutions.

On the other hand we exploit that the range of the additional objective
function is polynomially bounded to obtain a dense approximation for every
such value, and we do not restrict the archive to locally Pareto optimal solutions.
Moreover, we combine the mentioned aspects with tabu lists which is a well
established method in combinatorial optimization [6]. It has been successfully
applied to classical TSP as well as to other multiple-objective problems, e.g.
[7, 8]. Other multiple-objective variants of TSP that have been studied in the
literature mainly consider multiple cost matrices, e.g. [9].

2 Problem Statement

We define the Traveling Salesman Problem with Priorities (TSPwP) as follows.
As in case of classical TSP an instance x = (m,C) with m cities consists of some
cost matrix C = (ci,j)m×m with ci,j ∈ IN. A solution for x is any permutation
t = (a1, . . . , am) of {1, . . . ,m} having costs

z1(t) = cam,a1 +
m−1∑
i=1

cai,ai+1 .

Additionally we assume w.l.o.g. that cities are labeled according to some priority
rule, i.e., the city with highest (lowest) priority has label 1 (respectively, m). No
extra input data is needed. To measure violations of these priorities we define
the penalty resulting from the i-th city on tour t as pi = max{i− ai, 0}. E.g., if
a5 = 3 then city with priority 3 is visited in fifth place and hence p5 = 2. As the
second objective function we set

z2(t) =
m∑
i=1

pi.

Note that this takes the quantity of each penalty into account. In analogy to
the tardiness measure in machine scheduling one could also count the number
of non-zero penalties or minimize the largest penalty. We do not study these
alternatives here.

It is easy to see that t = (1, 2, . . . ,m) is the unique tour with z2(t) = 0, and
that

z2(m,m− 1, . . . , 1) =
{

(m2 − 1)/4 if m is odd
m2/4 otherwise.

Since no solutions with larger z2-values exist, we have for all tours t that

0 ≤ z2(t) ≤ m2/4. (1)

For notational convenience assume that m is even for the remainder of this paper.
We associate with every tour t the vector z(t) = (z1(t), z2(t)) where both

components need to be minimized. As is common in multicriteria optimization
we say a tour t dominates t′ if z1(t) ≤ z1(t′), z2(t) ≤ z2(t′) and z(t) 6= z(t′).
If there is no t that dominates t′ we call t′ Pareto-optimal or efficient. Observe
from (1) that for each input x the number of Pareto-optimal solutions t with
pairwise different vectors z(t) is polynomially bounded in the length of x. The
optimization goal for instances of TSPwP is to compute such a set of Pareto-
optimal tours.

It is easy to see that TSPwP is not a special case of bicriteria TSP where a
second cost matrix is given. Just note that usually z2(t) 6= z2(t′) if t′ is a cyclic
shift of the permutation t. There are also some similarities to the single-machine
scheduling problem 1|sfg|#(Cmax,

∑
Tj) with sequence-dependent setup times

where the overall makespan and the total tardiness both need to be minimized.
However, it is not clear how a reduction from TSPwP to this problem can be
achieved such that the quality of solutions is preserved.

3 Algorithm Design

We describe the main design ideas of our algorithm. The overall structure is
rather simple: We keep an archive A of candidate solutions, and try to im-
prove its quality via alternation of intensifying and diversifying phases during
the search. To organize this, we instantiate the pool template [10, 11] (Algorithm
2) to control the behaviour of an iterated local-search procedure (Algorithm 3).

To be more precise, solutions in the polynomially-sized set A = (t0, t1, . . .)
always have the property that

z2(tk) = k for 0 ≤ k ≤ m2/4. (2)

Hence we can understand A as a dense approximation of the Pareto front since
it contains one candidate for each possible value in the range of function z2. It is
not until the final step of the algorithm that a (locally) efficient set of solutions
is extracted from the set of best solutions that appeared during the search.

There is a straightforward way to generate a first version of the archive such
that (2) holds. Starting with (1, 2, 3, . . . ,m) we move the first city to the last po-
sition in the permutation via successive transpositions that increase the penalty
one-by-one. Then we move city 2 in (2, 3, . . . ,m, 1) to the second last position
resulting in (3, . . . ,m, 2, 1). This is repeated until we finally get (m, . . . , 3, 2, 1).
Note that not every transposition during this procedure strictly increases the
penalty, e.g., when turning (2, 3, . . . ,m, 1) into (3, 2, . . . ,m, 1).

For t = (a1, . . . , am) denote by exchng(t, i, j) the transposition of ai and aj .
Then we can state the following algorithm.

Algorithm 1: init()

begin
t := (1, 2, . . . ,m);
t0 := t; A := {t0};
k := 0;
for lastpos := m downto 2 do

for pos := 1 to (lastpos− 1) do
t := exchng(t, pos, pos+ 1);
if z2(t) = k + 1 then

k := k + 1;
tk := t; A := A ∪ {tk}

end
end

end
return A

end

Next we describe what the instantiation of the pool template looks like.
One kind of diversification we use is a collection T of tabu lists T (k) for each
0 ≤ k ≤ m2/4. We take these lists to ensure that a subsequent iteration of the
local search yields an archive A′ with solutions that all have z1-values different

from the ones of previous iterations. So if A = (t0, t1, . . .) is the content of the
archive j iterations ago, we let

T (k) = (z1
1 , . . . , z

l
1) with zj1 = z1(tk).

By storing values instead of solutions every tabu-list entry excludes numerous
other tours. The duration of this effect can immediately be controlled by the
length-parameter l. It is one out of just two search parameters, the other one
being the number of iterations for the halting condition.

After initializing the archive and the tabu lists, we repeatedly call the local-
search procedure intensify, we remember the best solutions found so far, up-
date the tabu lists and we apply one out of two randomly-chosen perturbation
operators. Inspired by the way intensification is organized (left-right sweeps,
see next subsection) we call our approach breadth-first local search (BFLS). To-
gether, we have the following algorithmic pattern.

Algorithm 2: BFLS(maxIterations, l)

begin
A := init();
init T with T (k) := ∅ for 0 ≤ k ≤ m2/4;
repeat

A′:=intensify (A, T);
update bestArchive with A′;
update T with A′;
choose r ∈ {1, 2} randomly;
A := Or(A′)

until maxIterations reached ;
return efficient solutions in bestArchive

end

A detailed description of the intensify-procedure is given in Section 3.1
below, while the perturbation operators O1 and O2 are explained in Section 3.2.
They form the second kind of diversification we use in the algorithm.

For A = (t0, t1, . . .) denote its coordinates in objective space as z(A) =
(z(t0), z(t1), . . .). Then the progress of BFLS can be depicted as shown in Fig. 1.

3.1 Intensification

The execution of a single call of the intensify-procedure starts with an archive
A and performs several left-right sweeps. During each sweep neighborhoods
N (tk) of tk ∈ A for k = 0, 1, . . . ,m2/4 are completely investigated in this order.
Whenever a tour t ∈ N (tk) with z2(t) = k′ is found such that

z1(t) 6∈ T (k′) and z1(t) < z1(tk′) (3)

for some tk′ ∈ A, then tk′ is replaced by t (see Fig. 2).
It has been observed in the literature that the combined use of different

neighborhood functions yields better results compared to a single function [5, 3].

z1

(a)

z(Anew)

z(A′)

z(A)

z2

m2/40

(b) (c)

Fig. 1. Every iteration has an intensify-step (a) followed by the application of a
perturbation operator (b). Due to forbidden values, the next iteration (c) returns a
vector z(A′

new) which is componentwise different from z(A′).

z1

z2

m2/40

z(A)
tk

N (tk)

(b)

(a)(a)

Fig. 2. Archive A is updated (a) whenever a non-forbidden but better solution is found
in N (tk). Each left-right sweep (b) repeats this for k = 0, 1, . . . , m2/4.

We apply two such functions that are efficiently computable but yet effective.
The first is simply the exchange neighborhood

N1(t) = {exchng(t, i, j) | 1 ≤ i < j ≤ m}.

For a second one we move every ai to some position j, i.e., if t = (. . . , ai, . . . , aj , . . .)
let move(t, i, j) = (. . . , ai−1, ai+1, . . . , aj , ai, . . .) and

N2(t) = {move(t, i, j) | 1 ≤ i, j ≤ m}.

The intensify-procedure alternates between N1 and N2 after every comple-
tion of a left-right sweep. This is repeated until A is locally optimal with respect
to both neighborhood functions.

Algorithm 3: intensify(A,T)

begin
s := 1;
repeat

for k := 0 to m2/4 do
foreach t ∈ Ns(tk) do

k′ := z2(t);
if (3) holds then

replace tk′ by t in A;
end

end
end
s := (s mod 2) + 1;

until A is locally optimal ;
return A

end

As a result of this procedure we obtain an archive A such that no tk ∈ A can
be further improved within

N (A) =
⋃
t∈A

⋃
s∈{1,2}

Ns(t).

So every tk is not only locally optimal for the value z2(tk) within Ns(tk), but it
is also a best tour for this z2-value in all other neighborhoods Ns(t) with t ∈ A
and s ∈ {1, 2}.

There are two more aspects worth noticing. First, even tours already known
to be dominated may contribute with their neighborhood to an improvement of
the archive (see again Fig. 2). This is because we do not restrict A to locally
Pareto-optimal solutions after each iteration.

Secondly, due to the overlapping of neighborhoods there is a variable search-
depth during intensification. If some tk+δ for δ > 0 is improved to t′k+δ when
looking at Ns(tk), the search continues with Ns(t′k+δ) later during the same
sweep. If tk−δ has changed, then Ns(t′k−δ) is considered during the next sweep.

It turns out that δ can be as large as m− 1 for both neighborhood functions. To
see this let t = (1, . . . ,m) and observe that

z2(t) + (m− 1) = z2(exchng(t, 1,m)) = z2(move(t, 1,m)).

3.2 Perturbation Operators

When A becomes a locally-optimal fixpoint during intensification, the BFLS al-
gorithm makes a random choice between two perturbation operators in order to
diversify the archive while maintaining other (parts of) solutions at the same
time.

The first operator simply performs a swap operation by exchanging the first
half with the second half of a tour. So if t = (a1, . . . , ai, ai+1, . . . , am) with
i = m/2 then

O1(t) = (ai+1, . . . , am, a1, . . . , ai).

This does not necessarily generate a new solution for every z2-value in the
archive, but it can be experimentally observed that a reasonable large fraction
of A is rebuilt. Note that this swap operator has the property that penalties
usually change but

z1(t) = z1(O1(t)).

For our second operator O2 we would like to obtain just the dual behaviour: It
should change the z1-value of a tour t ∈ A but z2(t) = z2(O2(t)). The design
of such an operator is more subtle. To our knowledge, it is not clear how many
permutations t′ exist with z2(t′) = z2(t) for some given t, and how they can be
computed without exhaustive search. The numbers S(m, k) of permutations t of
{1, . . . ,m} such that z2(t) = k are know as integer sequence A062869 from [12].

The idea for O2 is to define an equivalence relation such that some random
t′ = (a′1, . . . , a

′
m) with z2(t′) = z2(t) can be chosen efficiently from t’s equivalence

class when t = (a1, . . . , am) is given. Let

P (t) = {1 ≤ i ≤ m | pi = 0}

be the set of positions in t that do not contribute to z2(t). We say that t′ is a
variant of t, in symbols t ≈ t′, if and only if for 1 ≤ i ≤ m it holds that

i) i ∈ P (t)⇒ p′i = 0 and
ii) i 6∈ P (t)⇒ a′i = ai.

So t′ is obtained from t by permuting elements from V (t) = {aj | j ∈ P (t)}
without introducing new penalties. It is easy to see that ≈ is an equivalence
relation and that t ≈ t′ implies z2(t) = z2(t′). Observe furthermore that by ii)
the part of a tour t that is responsible for t’s penalty is carried over to every
variant of t.

In general, there are permutations t having ≈-equivalence classes of expo-
nential size, e.g, if t = (m,m − 1, . . . , 1) then every permutation of the cities
m,m−1, . . . ,m/2 yields a variant of t. However, the following producer-consumer

type of algorithm efficiently computes O2(t) by making a uniform random choice
from [t]≈. A 0-1-vector (d1, . . . , dm) stores the candidates from V (t) (producer)
that can be put at position i ∈ P (t) (consumer) as i decreases from m to 1.

Algorithm 4: O2(t)

begin
t′ := t;
(d1, . . . , dm) := (0, . . . , 0);
for i := m downto 1 do

if i ∈ V (t) then di := 1 end;
if i ∈ P (t) then

choose r ∈ {i ≤ j ≤ m | dj = 1} randomly;
a′i := r;
dr := 0

end
end
return t′

end

It must be noticed that there are permutations with [t]≈ = {t}, e.g, if t =
(2, 1, 4, 3, . . . ,m,m− 1). In such an undesirable case O2 has no effect. We finally
prove in this section how many permutations have single-elemented equivalence
classes. To do so, we first show the following characterization.

Lemma 1. Let t = (a1, . . . , am) be a permutation of {1, . . . ,m}. Then it holds
that [t]≈ = {t} if and only if pj > 0 for all i ∈ P (t) and j with i < j ≤ ai.

Proof. We prove both implications by contraposition. So first assume that there
is some i ∈ P (t) and some j with i < j ≤ ai such that pj = 0. If we put ai in
t at position j there is penalty 0 at this position because ai ≥ j. On the other
hand, we get from pj = 0 that aj ≥ j > i. So we can also place aj at position i
in t while having penalty 0 there as well. Since i 6= j the transposition of ai and
aj yields a strict variant of t.

Conversely, let t′ = (a′1, . . . , a
′
m) ∈ [t]≈ with t′ 6= t. So there must be some

ai ∈ V (t) and i, j ∈ P (t) with ai = a′j but i 6= j. We may assume w.l.o.g. that
j > i since it cannot be the case that j ≤ i for all ai ∈ V (t). Because p′j = 0 it
holds that ai = a′j ≥ j and with P (t) = P (t′) we see that also pj = 0. Together,
we identified some i ∈ P (t) and j with i < j ≤ ai such that pj = 0. ut

Next we want to count all permutations with the above property. Assume
P (t) = {i1, . . . , ik} for some 0 ≤ k ≤ m and i1 < · · · < ik. For every il ∈
P (t) it holds that ail ∈ {il, . . . ,m} and due to the previous lemma we have
il+1 ∈ {ail , . . . ,m}. In order to count these possibilities we consider a tree B(m)
with its root labeled 0, and such that every node with label n has successors
labeled n + 1, . . . ,m. Then a node with label n at depth d means aid = n and
id+1 = n + 1, and every leaf of B(m) corresponds uniquely to a permutation t
with [t]≈ = {t}. An easy induction shows that B(m) has 2m−1 leaves.

Theorem 1. There are 2m−1 permutations of {1, . . . ,m} with [t]≈ = {t}.

Although exponential, this is a fast decreasing fraction of the size of the
solution space m! as can be seen as follows. Recall that w.l.o.g. m is even.

m! = 2m−1 ·
(m

2

)
! ·
m/2−1∏
i=1

(i+ 1/2)

> 2m−1 ·
(m

2

)
! ·
(m

2
− 1
)

!

So, e.g., for m = 48 this means 2m−1/m! ≤ 10−46.

4 Experimental Results

In order to test our algorithm we first compare its results with optimal solutions
of some randomly-generated smaller instances. After that we investigate larger
problem instances from TSPLIB [13].

It turns out that BFLS yields very good approximations of the complete
Pareto front for randomly-generated instances with m ≤ 13. In fact, in almost all
cases the results differ from the optimal curve only slightly and only for very few
z2-values (optimal values being calculated via a multicritera branch-and-bound
algorithm). We observe that deviations are not biased towards the minimal-cost
tour. Furthermore, all computations are done reasonable fast. In many cases it
can even be observed that the optimal curve is met exactly. One such example
is shown in Fig. 3 for a randomly-generated instance with m = 12 cities.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

z2

z
1

Fig. 3. Pareto front and BFLS results coincide in case of this randomly-generated in-
stance with m = 12 cities. The BFLS algorithm uses maxIterations = 20 and l = 3.

For larger m we study instances from TSPLIB. Not surprisingly, we can
neither compute the exact Pareto front in a reasonable amount of time on our
own, nor are all of these values stored in the library. However, the minimum-cost
value for the objective function z1 is provided in the library and we take it as
slight evidence to judge the approximation quality of the BFLS algorithm. We
choose asymmetric instances to match the situation of Examples 1 and 2.

Figure 4 shows the initial archive A as generated by Algorithm 1, and the
approximation of the Pareto front for the instance ry48p as finally provided by
BFLS. Although the optimal z1-value of 14422 is not exactly reached in this case,
a solution t is found within 0.6 percent of this value. For this solution we have
z2(t) = 400 while m2/4 = 576.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300 350 400 450 500 550

z2

z
1

Fig. 4. Initial archive and final result of BFLS with lower bound for z1 for the instance
ry48p from TSPLIB.

As another example we display the results on instance ftv100. Figure 5 again
shows the initial archive and the approximated Pareto front returned by the BFLS
algorithm (resticted to the more interesting part z2 ≤ 550). For this instance
with m = 101 cities a minimum-cost tour t with the optimal value z1(t) = 1788
is found.

Finally, Table 1 compares the best found values for z1 with the known optimal
values for some more instances from TSPLIB. As can be seen the results of BFLS
for this single point of the Pareto front differ only slightly from optimal values.
Together with our initial observations on random instances we conclude that one
can expect a rather close approximation of the complete Pareto front using the
BFLS approach. Only very few iterations and short tabu lists were necessary to
achieve these results. They were all computed using maxIterations = 25 and
l ∈ {3, 4, 5}.

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500 550

z2

z
1

Fig. 5. Initial archive and final result of BFLS including an optimal minimum-cost tour
for instance ftv100 from TSPLIB.

Table 1. Comparison of optimal z1-values with the ones found by BFLS for some
instances from TSPLIB.

Instance m Optimum BFLS Difference

br17 17 39 39 0%
ftv33 34 1286 1347 5%
ftv35 36 1473 1475 0.1%
ftv38 39 1530 1532 0.1%
p43 43 5620 5620 0%

ftv44 45 1613 1636 1.2%
ry48p 48 14422 14507 0.6%
ftv47 48 1776 1855 4.4%
ft53 53 6905 6909 0.1%
ftv70 71 1950 1961 0.6%
ftv90 91 1579 1579 0%

kro124p 100 36230 37813 4.5%
ftv100 101 1788 1788 0%
ftv130 131 2307 2354 2.0%
ftv150 151 2611 2729 4.5%

The most expensive part of these computations is the call of the intensify-
procedure. In order to improve its performance we label each solution tk in the
archive to indicate whether there was an improvement to some t′k during the last
sweeps or not. In this way we avoid recalculation of neighborhoods that have
already been explored.

5 Conclusions

We propose the local-search based algorithm BFLS and argue that it is a rea-
sonable approach to solve the bicriteria version TSPwP of classical TSP. The
algorithm is conceptually easy and can be summarized as follows. A dense (with
respect to z2) collection of candidate solutions is iteratively improved via left-
right sweeps involving two neighborhood structures and a variable search-depth.
A well-balanced amount of diversification is achieved using a collection of tabu
lists and problem-specific perturbation operators. Further investigations could
involve the performace of this approach on other bicriteria optimization prob-
lems. A necessary prerequisite for the type of archive used here is that the range
of at least one objective function is polynomially bounded in the input size.

References

1. Gutin, G., Punnen, A.P., eds.: The traveling salesman problem and its variations.
Volume 12 of Combinatorial Optimization. Springer (2007)

2. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Metaheuristics
for Multiobjective Optimisation. Volume 535 of Lecture Notes in Economics and
Mathematical Systems., Springer Verlag (2004)

3. Geiger, M.J.: Foundations of the pareto iterated local seach metaheuristic. In:
Proceedings of the 18th International Conference on Multiple Criteria Decision
Making, Chania, Greece, June 19-23 (2006)

4. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook
of Metaheuristics. Volume 57 of International Series in Operations Research &
Management Science., Kluwer Academic Publishers (2003)

5. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Handbook of Meta-
heuristics. Volume 57 of International Series in Operations Research & Manage-
ment Science., Kluwer Academic Publishers (2003)

6. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers (1997)
7. Misevicius, A.: Using iterated tabu search for the travelling salesman problem.

Information technology and control 32(3) (2004) 29–40
8. Armentano, V.A., Arroyo, J.E.C.: An application of a multi-objective tabu search

algorithm to a bicriteria flowshop problem. Journal of Heuristics 10(5) (September
2004) 463–481

9. Hansen, M.P.: Use of substitute scalarizing functions to guide a local search based
heuristic: The case of moTSP. Journal of Heuristics 6(3) (August 2000) 419–431

10. Greistorfer, P., Voß, S.: Controlled pool maintenance in combinatorial optimiza-
tion. In: Metaheuristic Optimization via Memory and Evolution Tabu Search and
Scatter Search. Volume 30 of Operations Research/Computer Science Interfaces.,
Springer Verlag (2005) 382–424

11. Voß, S.: Hybridizing metaheuristics: The road to success in problem solving!?! In:
Proceedings of the 8th EU/MEeting on Metaheuristics in the Service Industry,
Stuttgart, Germany (2007)

12. The on-line encyclopedia of integer sequences: Sequence A062869.
http://www.research.att.com/∼njas/sequences/A062869

13. Reinelt, G.: TSPLIB95. http://www.iwr.uni-heidelberg.de/groups/comopt/soft-
ware/TSPLIB95/

